These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 32800325)

  • 61. Disturbance Observation and Suppression in an Airborne Electro-Optical Stabilized Platform Based on a Generalized High-Order Extended State Observer.
    Wang L; Li X; Zhou Z; Liu Y; Yang Z; Zhang S; Li C
    Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894420
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Generalized predictor based active disturbance rejection control for non-minimum phase systems.
    Geng X; Hao S; Liu T; Zhong C
    ISA Trans; 2019 Apr; 87():34-45. PubMed ID: 30503271
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Design and parameter tuning of active disturbance rejection control for uncertain multivariable systems via quantitative feedback theory.
    Cheng Y; Fan Y; Zhang P; Yuan Y; Li J
    ISA Trans; 2023 Oct; 141():288-302. PubMed ID: 37442680
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A GA-based parameters tuning method for an ADRC controller of ISP for aerial remote sensing applications.
    Zhou X; Gao H; Zhao B; Zhao L
    ISA Trans; 2018 Oct; 81():318-328. PubMed ID: 30126697
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Modeling and tracking control of dielectric elastomer actuators based on fractional calculus.
    Wu J; Xu Z; Zhang Y; Su CY; Wang Y
    ISA Trans; 2023 Jul; 138():687-695. PubMed ID: 36792481
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Data-driven iterative tuning based active disturbance rejection control for FOPTD model.
    Chen Z; Hao YS; Su ZG; Sun L
    ISA Trans; 2022 Sep; 128(Pt A):593-605. PubMed ID: 34756579
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Comprehensive Engineering Frequency Domain Analysis and Vibration Suppression of Flexible Aircraft Based on Active Disturbance Rejection Controller.
    Liu L; Tian B
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015977
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A globally Mittag-Leffler bounded high-gain observer for systems with unknown dynamics and noisy measurements.
    Martínez-Guerra R; Flores-Flores JP; Govea-Vargas A
    ISA Trans; 2022 Sep; 128(Pt B):336-345. PubMed ID: 34861987
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Model predictive and compensated ADRC for permanent magnet synchronous linear motors.
    Zhan B; Zhang L; Liu Y; Gao J
    ISA Trans; 2023 May; 136():605-621. PubMed ID: 36517265
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Composite ADRC Speed Control Method Based on LTDRO Feedforward Compensation.
    Jin R; Wang J; Ou Y; Li J
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676222
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Position Control of Gear Shift based on Sliding Mode Active Disturbance Rejection Control for Small-Sized Tractors.
    Jiang C; Yin C; Gao J; Yuan G
    Sci Prog; 2022; 105(1):368504221081966. PubMed ID: 35225080
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The Improved Particle Swarm Optimization Method: An Efficient Parameter Tuning Method with the Tuning Parameters of a Dual-Motor Active Disturbance Rejection Controller.
    Deng Y; Zhu J; Liu H
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896698
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Sampled-Data-Based Event-Triggered Active Disturbance Rejection Control for Disturbed Systems in Networked Environment.
    Sun J; Yang J; Li S; Zheng WX
    IEEE Trans Cybern; 2019 Feb; 49(2):556-566. PubMed ID: 29990275
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Adaptive disturbance cancellation for a class of MIMO nonlinear Euler-Lagrange systems under input saturation.
    Li J; Du J
    ISA Trans; 2020 Jan; 96():14-23. PubMed ID: 31421802
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Predictive active disturbance rejection control for processes with time delay.
    Zheng Q; Gao Z
    ISA Trans; 2014 Jul; 53(4):873-81. PubMed ID: 24182516
    [TBL] [Abstract][Full Text] [Related]  

  • 76. On the stability of active disturbance rejection control for first-order plus delay time processes.
    Skupin P; Nowak P; Czeczot J
    ISA Trans; 2022 Jun; 125():179-188. PubMed ID: 34238518
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Phase leading active disturbance rejection control for a nanopositioning stage.
    Wei W; Zhang Z; Zuo M
    ISA Trans; 2021 Oct; 116():218-231. PubMed ID: 33509596
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Linear active disturbance rejection control of underactuated systems: the case of the Furuta pendulum.
    Ramírez-Neria M; Sira-Ramírez H; Garrido-Moctezuma R; Luviano-Juárez A
    ISA Trans; 2014 Jul; 53(4):920-8. PubMed ID: 24252521
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Angle attitude control for a networked pneumatic muscle actuators system with input quantization: A prescribed-time nonlinear ESO approach.
    Cao Y; Li L; Zhao L; Qiang J
    ISA Trans; 2024 Sep; 152():308-317. PubMed ID: 38972824
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Fractional order PID control design for semi-active control of smart base-isolated structures: A multi-objective cuckoo search approach.
    Zamani AA; Tavakoli S; Etedali S
    ISA Trans; 2017 Mar; 67():222-232. PubMed ID: 28111029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.