BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 32800852)

  • 1. Antisense drug discovery and development technology considered in a pharmacological context.
    Crooke ST; Liang XH; Crooke RM; Baker BF; Geary RS
    Biochem Pharmacol; 2021 Jul; 189():114196. PubMed ID: 32800852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Re-Engineering RNA Molecules into Therapeutic Agents.
    Egli M; Manoharan M
    Acc Chem Res; 2019 Apr; 52(4):1036-1047. PubMed ID: 30912917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of modified antisense oligonucleotides and siRNAs as antiviral drugs.
    Wagner A; Bock CT; Fechner H; Kurreck J
    Future Med Chem; 2015; 7(13):1637-42. PubMed ID: 26381598
    [No Abstract]   [Full Text] [Related]  

  • 4. Antisense technology: A review.
    Crooke ST; Liang XH; Baker BF; Crooke RM
    J Biol Chem; 2021; 296():100416. PubMed ID: 33600796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small Drugs, Huge Impact: The Extraordinary Impact of Antisense Oligonucleotides in Research and Drug Development.
    Quemener AM; Centomo ML; Sax SL; Panella R
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dermal/transdermal delivery of small interfering RNA and antisense oligonucleotides- advances and hurdles.
    Ita K
    Biomed Pharmacother; 2017 Mar; 87():311-320. PubMed ID: 28064104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA Therapeutics in Oncology: Advances, Challenges, and Future Directions.
    MacLeod AR; Crooke ST
    J Clin Pharmacol; 2017 Oct; 57 Suppl 10():S43-S59. PubMed ID: 28921648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disarmed anthrax toxin delivers antisense oligonucleotides and siRNA with high efficiency and low toxicity.
    Dyer PDR; Shepherd TR; Gollings AS; Shorter SA; Gorringe-Pattrick MAM; Tang CK; Cattoz BN; Baillie L; Griffiths PC; Richardson SCW
    J Control Release; 2015 Dec; 220(Pt A):316-328. PubMed ID: 26546271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution and biotransformation of therapeutic antisense oligonucleotides and conjugates.
    Weidolf L; Björkbom A; Dahlén A; Elebring M; Gennemark P; Hölttä M; Janzén D; Li X; Andersson S
    Drug Discov Today; 2021 Oct; 26(10):2244-2258. PubMed ID: 33862193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Review on Commercial Oligonucleotide Drug Products.
    Vinjamuri BP; Pan J; Peng P
    J Pharm Sci; 2024 Jul; 113(7):1749-1768. PubMed ID: 38679232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antisense applications for biological control.
    Pan WH; Clawson GA
    J Cell Biochem; 2006 May; 98(1):14-35. PubMed ID: 16440307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides.
    Juliano R; Alam MR; Dixit V; Kang H
    Nucleic Acids Res; 2008 Jul; 36(12):4158-71. PubMed ID: 18558618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Safety of antisense oligonucleotide and siRNA-based therapeutics.
    Chi X; Gatti P; Papoian T
    Drug Discov Today; 2017 May; 22(5):823-833. PubMed ID: 28159625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antisense Oligonucleotides: Translation from Mouse Models to Human Neurodegenerative Diseases.
    Schoch KM; Miller TM
    Neuron; 2017 Jun; 94(6):1056-1070. PubMed ID: 28641106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hsp90 protein interacts with phosphorothioate oligonucleotides containing hydrophobic 2'-modifications and enhances antisense activity.
    Liang XH; Shen W; Sun H; Kinberger GA; Prakash TP; Nichols JG; Crooke ST
    Nucleic Acids Res; 2016 May; 44(8):3892-907. PubMed ID: 26945041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Phosphorothioate Chirality on Double-Stranded siRNAs: A Systematic Evaluation of Stereopure siRNA Designs.
    Sakamuri S; Eltepu L; Liu D; Lam S; Meade BR; Liu B; Dello Iacono G; Kabakibi A; Luukkonen L; Leedom T; Foster M; Bradshaw CW
    Chembiochem; 2020 May; 21(9):1304-1308. PubMed ID: 31863714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antisense technologies have a future fighting neurodegenerative diseases.
    Seidman S; Eckstein F; Grifman M; Soreq H
    Antisense Nucleic Acid Drug Dev; 1999 Aug; 9(4):333-40. PubMed ID: 10463077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site Selective Antibody-Oligonucleotide Conjugation via Microbial Transglutaminase.
    Huggins IJ; Medina CA; Springer AD; van den Berg A; Jadhav S; Cui X; Dowdy SF
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31509944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in the Design of (Nano)Formulations for Delivery of Antisense Oligonucleotides and Small Interfering RNA: Focus on the Central Nervous System.
    Mendonça MCP; Kont A; Aburto MR; Cryan JF; O'Driscoll CM
    Mol Pharm; 2021 Apr; 18(4):1491-1506. PubMed ID: 33734715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of lipoprotein metabolism by antisense technology: preclinical drug discovery methodology.
    Crooke RM; Graham MJ
    Methods Mol Biol; 2013; 1027():309-24. PubMed ID: 23912993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.