These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

610 related articles for article (PubMed ID: 32800925)

  • 1. Analysis of biomolecular condensates and protein phase separation with microfluidic technology.
    Linsenmeier M; Kopp MRG; Stavrakis S; de Mello A; Arosio P
    Biochim Biophys Acta Mol Cell Res; 2021 Jan; 1868(1):118823. PubMed ID: 32800925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Implications of Intracellular Phase Transitions.
    Holehouse AS; Pappu RV
    Biochemistry; 2018 May; 57(17):2415-2423. PubMed ID: 29323488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theories for Sequence-Dependent Phase Behaviors of Biomolecular Condensates.
    Lin YH; Forman-Kay JD; Chan HS
    Biochemistry; 2018 May; 57(17):2499-2508. PubMed ID: 29509422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organization and Function of Non-dynamic Biomolecular Condensates.
    Woodruff JB; Hyman AA; Boke E
    Trends Biochem Sci; 2018 Feb; 43(2):81-94. PubMed ID: 29258725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoswitchable Molecular Communication between Programmable DNA-Based Artificial Membraneless Organelles.
    Zhao QH; Cao FH; Luo ZH; Huck WTS; Deng NN
    Angew Chem Int Ed Engl; 2022 Mar; 61(14):e202117500. PubMed ID: 35090078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A guide to regulation of the formation of biomolecular condensates.
    Bratek-Skicki A; Pancsa R; Meszaros B; Van Lindt J; Tompa P
    FEBS J; 2020 May; 287(10):1924-1935. PubMed ID: 32080961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetic Reconstitution for Determining the Form and Function of Membraneless Organelles.
    Dine E; Toettcher JE
    Biochemistry; 2018 May; 57(17):2432-2436. PubMed ID: 29373016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomolecular condensate phase diagrams with a combinatorial microdroplet platform.
    Arter WE; Qi R; Erkamp NA; Krainer G; Didi K; Welsh TJ; Acker J; Nixon-Abell J; Qamar S; Guillén-Boixet J; Franzmann TM; Kuster D; Hyman AA; Borodavka A; George-Hyslop PS; Alberti S; Knowles TPJ
    Nat Commun; 2022 Dec; 13(1):7845. PubMed ID: 36543777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein phase separation and its role in chromatin organization and diseases.
    Li J; Zhang Y; Chen X; Ma L; Li P; Yu H
    Biomed Pharmacother; 2021 Jun; 138():111520. PubMed ID: 33765580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase transition modulation and biophysical characterization of biomolecular condensates using microfluidics.
    Chan KWY; Navi M; Kieda J; Moran T; Hammers D; Lee S; Tsai SSH
    Lab Chip; 2022 Jul; 22(14):2647-2656. PubMed ID: 35616128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomolecular condensates in cell biology and virology: Phase-separated membraneless organelles (MLOs).
    Sehgal PB; Westley J; Lerea KM; DiSenso-Browne S; Etlinger JD
    Anal Biochem; 2020 May; 597():113691. PubMed ID: 32194074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of Synthetic Membraneless Organelles in Microfluidic Droplets.
    Linsenmeier M; Kopp MRG; Grigolato F; Emmanoulidis L; Liu D; Zürcher D; Hondele M; Weis K; Capasso Palmiero U; Arosio P
    Angew Chem Int Ed Engl; 2019 Oct; 58(41):14489-14494. PubMed ID: 31334587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics.
    Conti BA; Oppikofer M
    Trends Pharmacol Sci; 2022 Oct; 43(10):820-837. PubMed ID: 36028355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide-Based Biomimetic Condensates via Liquid-Liquid Phase Separation as Biomedical Delivery Vehicles.
    Song S; Ivanov T; Yuan D; Wang J; da Silva LC; Xie J; Cao S
    Biomacromolecules; 2024 Sep; 25(9):5468-5488. PubMed ID: 39178343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous driving forces give rise to protein-RNA condensates with coexisting phases and complex material properties.
    Boeynaems S; Holehouse AS; Weinhardt V; Kovacs D; Van Lindt J; Larabell C; Van Den Bosch L; Das R; Tompa PS; Pappu RV; Gitler AD
    Proc Natl Acad Sci U S A; 2019 Apr; 116(16):7889-7898. PubMed ID: 30926670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomolecular Condensates: Sequence Determinants of Phase Separation, Microstructural Organization, Enzymatic Activity, and Material Properties.
    Schuster BS; Regy RM; Dolan EM; Kanchi Ranganath A; Jovic N; Khare SD; Shi Z; Mittal J
    J Phys Chem B; 2021 Apr; 125(14):3441-3451. PubMed ID: 33661634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designer Condensates: A Toolkit for the Biomolecular Architect.
    Hastings RL; Boeynaems S
    J Mol Biol; 2021 Jun; 433(12):166837. PubMed ID: 33539874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aberrant phase separation and cancer.
    Taniue K; Akimitsu N
    FEBS J; 2022 Jan; 289(1):17-39. PubMed ID: 33583140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein conformation and biomolecular condensates.
    Vazquez DS; Toledo PL; Gianotti AR; Ermácora MR
    Curr Res Struct Biol; 2022; 4():285-307. PubMed ID: 36164646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-specific RNA accumulation and duplex thermodynamics in multiphase coacervate models for membraneless organelles.
    Choi S; Meyer MO; Bevilacqua PC; Keating CD
    Nat Chem; 2022 Oct; 14(10):1110-1117. PubMed ID: 35773489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.