These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32801089)

  • 21. Towards atomically resolved EELS elemental and fine structure mapping via multi-frame and energy-offset correction spectroscopy.
    Wang Y; Huang MRS; Salzberger U; Hahn K; Sigle W; van Aken PA
    Ultramicroscopy; 2018 Jan; 184(Pt B):98-105. PubMed ID: 29102829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electron energy-loss spectroscopy (EELS) with a cold-field emission scanning electron microscope at low accelerating voltage in transmission mode.
    Brodusch N; Demers H; Gellé A; Moores A; Gauvin R
    Ultramicroscopy; 2019 Aug; 203():21-36. PubMed ID: 30595397
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trace elemental analysis at nanometer spatial resolution by parallel-detection electron energy loss spectroscopy.
    Leapman RD; Newbury DE
    Anal Chem; 1993 Sep; 65(18):2409-14. PubMed ID: 8238934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation.
    Philipp HT; Tate MW; Purohit P; Shanks KS; Weiss JT; Gruner SM
    J Synchrotron Radiat; 2016 Mar; 23(2):395-403. PubMed ID: 26917125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detective efficiency of photon counting detectors with spectral degradation and crosstalk.
    Rajbhandary PL; Persson M; Pelc NJ
    Med Phys; 2020 Jan; 47(1):27-36. PubMed ID: 31665541
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advantages of a monochromator for bandgap measurements using electron energy-loss spectroscopy.
    Kimoto K; Kothleitner G; Grogger W; Matsui Y; Hofer F
    Micron; 2005; 36(2):185-9. PubMed ID: 15629650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Empirical electro-optical and x-ray performance evaluation of CMOS active pixels sensor for low dose, high resolution x-ray medical imaging.
    Arvanitis CD; Bohndiek SE; Royle G; Blue A; Liang HX; Clark A; Prydderch M; Turchetta R; Speller R
    Med Phys; 2007 Dec; 34(12):4612-25. PubMed ID: 18196789
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD.
    Tiffenberg J; Sofo-Haro M; Drlica-Wagner A; Essig R; Guardincerri Y; Holland S; Volansky T; Yu TT
    Phys Rev Lett; 2017 Sep; 119(13):131802. PubMed ID: 29341716
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monte Carlo investigation of charge-transport effects on energy resolution and detection efficiency of pixelated CZT detectors for SPECT/PET applications.
    Myronakis ME; Darambara DG
    Med Phys; 2011 Jan; 38(1):455-67. PubMed ID: 21361214
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electronic structure analyses of BN network materials using high energy-resolution spectroscopy methods based on transmission electron microscopy.
    Terauchi M
    Microsc Res Tech; 2006 Jul; 69(7):531-7. PubMed ID: 16718665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoscale EELS analysis of dielectric function and bandgap properties in gaN and related materials.
    Brockt G; Lakner H
    Micron; 2000 Aug; 31(4):435-40. PubMed ID: 10741613
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-energy X-ray diffraction using the Pixium 4700 flat-panel detector.
    Daniels JE; Drakopoulos M
    J Synchrotron Radiat; 2009 Jul; 16(Pt 4):463-8. PubMed ID: 19535858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Charting the low-loss region in electron energy loss spectroscopy with machine learning.
    Roest LI; van Heijst SE; Maduro L; Rojo J; Conesa-Boj S
    Ultramicroscopy; 2021 Mar; 222():113202. PubMed ID: 33453606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization of quantitative electron energy loss spectroscopy in the low loss region: phosphorus L-edge.
    Wang YY; Ho R; Shao Z; Somlyo AP
    Ultramicroscopy; 1992; 41(1-3):11-31. PubMed ID: 1641912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photon counting multienergy x-ray imaging: effect of the characteristic x rays on detector performance.
    Shikhaliev PM; Fritz SG; Chapman JW
    Med Phys; 2009 Nov; 36(11):5107-19. PubMed ID: 19994521
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sub-microsecond-resolved multi-speckle X-ray photon correlation spectroscopy with a pixel array detector.
    Zhang Q; Dufresne EM; Narayanan S; Maj P; Koziol A; Szczygiel R; Grybos P; Sutton M; Sandy AR
    J Synchrotron Radiat; 2018 Sep; 25(Pt 5):1408-1416. PubMed ID: 30179180
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sub-100 nanosecond temporally resolved imaging with the Medipix3 direct electron detector.
    Paterson GW; Lamb RJ; Ballabriga R; Maneuski D; O'Shea V; McGrouther D
    Ultramicroscopy; 2020 Mar; 210():112917. PubMed ID: 31841837
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electron energy loss spectroscopy investigation through a nano ablated uranium dioxide sample.
    Degueldre C; Schaeublin R; Krbanjevic J; Minikus E
    Talanta; 2013 Mar; 106():408-13. PubMed ID: 23598145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical gap measurements on individual boron nitride nanotubes by electron energy loss spectroscopy.
    Arenal R; Stéphan O; Kociak M; Taverna D; Loiseau A; Colliex C
    Microsc Microanal; 2008 Jun; 14(3):274-82. PubMed ID: 18482472
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimulated electron energy loss and gain in an electron microscope without a pulsed electron gun.
    Das P; Blazit JD; Tencé M; Zagonel LF; Auad Y; Lee YH; Ling XY; Losquin A; Colliex C; Stéphan O; García de Abajo FJ; Kociak M
    Ultramicroscopy; 2019 Aug; 203():44-51. PubMed ID: 31000482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.