BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

463 related articles for article (PubMed ID: 32801175)

  • 21. CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli.
    Kim SK; Seong W; Han GH; Lee DH; Lee SG
    Microb Cell Fact; 2017 Nov; 16(1):188. PubMed ID: 29100516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flux redistribution of central carbon metabolism for efficient production of l-tryptophan in Escherichia coli.
    Xiong B; Zhu Y; Tian D; Jiang S; Fan X; Ma Q; Wu H; Xie X
    Biotechnol Bioeng; 2021 Mar; 118(3):1393-1404. PubMed ID: 33399214
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deletion of regulator-encoding genes fadR, fabR and iclR to increase L-threonine production in Escherichia coli.
    Yang J; Fang Y; Wang J; Wang C; Zhao L; Wang X
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4549-4564. PubMed ID: 31001742
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient production of trans-4-Hydroxy-l-proline from glucose by metabolic engineering of recombinant Escherichia coli.
    Zhang HL; Zhang C; Pei CH; Han MN; Xu ZD; Li CH; Li W
    Lett Appl Microbiol; 2018 May; 66(5):400-408. PubMed ID: 29432647
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic Engineering of Escherichia coli for Efficient Production of 2-Pyrone-4,6-dicarboxylic Acid from Glucose.
    Luo ZW; Kim WJ; Lee SY
    ACS Synth Biol; 2018 Sep; 7(9):2296-2307. PubMed ID: 30096230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering of Phosphoserine Aminotransferase Increases the Conversion of l-Homoserine to 4-Hydroxy-2-ketobutyrate in a Glycerol-Independent Pathway of 1,3-Propanediol Production from Glucose.
    Zhang Y; Ma C; Dischert W; Soucaille P; Zeng AP
    Biotechnol J; 2019 Sep; 14(9):e1900003. PubMed ID: 30925016
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly Efficient Production of l-Histidine from Glucose by Metabolically Engineered
    Wu H; Tian D; Fan X; Fan W; Zhang Y; Jiang S; Wen C; Ma Q; Chen N; Xie X
    ACS Synth Biol; 2020 Jul; 9(7):1813-1822. PubMed ID: 32470291
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic engineering and pathway construction for
    Li B; Huang LG; Yang YF; Chen YY; Zhou XJ; Liu ZQ; Zheng YG
    3 Biotech; 2023 Jun; 13(6):173. PubMed ID: 37188286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic engineering of Escherichia coli for high-yield uridine production.
    Wu H; Li Y; Ma Q; Li Q; Jia Z; Yang B; Xu Q; Fan X; Zhang C; Chen N; Xie X
    Metab Eng; 2018 Sep; 49():248-256. PubMed ID: 30189293
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a nonauxotrophic L-homoserine hyperproducer in Escherichia coli by systems metabolic engineering.
    Cai M; Zhao Z; Li X; Xu Y; Xu M; Rao Z
    Metab Eng; 2022 Sep; 73():270-279. PubMed ID: 35961600
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of p-amino-L-phenylalanine (L-PAPA) from glycerol by metabolic grafting of Escherichia coli.
    Mohammadi Nargesi B; Trachtmann N; Sprenger GA; Youn JW
    Microb Cell Fact; 2018 Sep; 17(1):149. PubMed ID: 30241531
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systematic Analysis of Bottlenecks in a Multibranched and Multilevel Regulated Pathway: The Molecular Fundamentals of l-Methionine Biosynthesis in Escherichia coli.
    Huang JF; Shen ZY; Mao QL; Zhang XM; Zhang B; Wu JS; Liu ZQ; Zheng YG
    ACS Synth Biol; 2018 Nov; 7(11):2577-2589. PubMed ID: 30274509
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate L-pipecolic acid in Escherichia coli.
    Ying H; Tao S; Wang J; Ma W; Chen K; Wang X; Ouyang P
    Microb Cell Fact; 2017 Mar; 16(1):52. PubMed ID: 28347340
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pathway construction and metabolic engineering for fermentative production of β-alanine in Escherichia coli.
    Zou X; Guo L; Huang L; Li M; Zhang S; Yang A; Zhang Y; Zhu L; Zhang H; Zhang J; Feng Z
    Appl Microbiol Biotechnol; 2020 Mar; 104(6):2545-2559. PubMed ID: 31989219
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redirecting Metabolic Flux via Combinatorial Multiplex CRISPRi-Mediated Repression for Isopentenol Production in Escherichia coli.
    Tian T; Kang JW; Kang A; Lee TS
    ACS Synth Biol; 2019 Feb; 8(2):391-402. PubMed ID: 30681833
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production.
    Cress BF; Leitz QD; Kim DC; Amore TD; Suzuki JY; Linhardt RJ; Koffas MA
    Microb Cell Fact; 2017 Jan; 16(1):10. PubMed ID: 28095853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Advances in the biosynthesis of L-homoserine and its derivatives by metabolic engineering of
    Niu K; Gao L; Ge L; Liu Z; Zheng Y
    Sheng Wu Gong Cheng Xue Bao; 2022 Dec; 38(12):4385-4402. PubMed ID: 36593184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi-guided multiplexed metabolic tuning.
    Gao C; Wang S; Hu G; Guo L; Chen X; Xu P; Liu L
    Biotechnol Bioeng; 2018 Mar; 115(3):661-672. PubMed ID: 29105733
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering of high yield production of L-serine in Escherichia coli.
    Mundhada H; Schneider K; Christensen HB; Nielsen AT
    Biotechnol Bioeng; 2016 Apr; 113(4):807-16. PubMed ID: 26416585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic engineering of Escherichia coli for microbial production of L-methionine.
    Huang JF; Liu ZQ; Jin LQ; Tang XL; Shen ZY; Yin HH; Zheng YG
    Biotechnol Bioeng; 2017 Apr; 114(4):843-851. PubMed ID: 27723097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.