BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

463 related articles for article (PubMed ID: 32801175)

  • 41. Integrated strain engineering and bioprocessing strategies for high-level bio-based production of 3-hydroxyvalerate in Escherichia coli.
    Miscevic D; Mao JY; Kefale T; Abedi D; Huang CC; Moo-Young M; Chou CP
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5259-5272. PubMed ID: 32291486
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulation of homoserine O-succinyltransferase for efficient production of L-methionine in engineered Escherichia coli.
    Tang XL; Chen LJ; Du XY; Zhang B; Liu ZQ; Zheng YG
    J Biotechnol; 2020 Feb; 309():53-58. PubMed ID: 31891734
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metabolic control analysis enables rational improvement of E. coli L-tryptophan producers but methylglyoxal formation limits glycerol-based production.
    Schoppel K; Trachtmann N; Korzin EJ; Tzanavari A; Sprenger GA; Weuster-Botz D
    Microb Cell Fact; 2022 Oct; 21(1):201. PubMed ID: 36195869
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Local metabolic response of Escherichia coli to the module genetic perturbations in l-methionine biosynthetic pathway.
    Shen ZY; Wang YF; Wang LJ; Wang Y; Liu ZQ; Zheng YG
    J Biosci Bioeng; 2023 Mar; 135(3):217-223. PubMed ID: 36707399
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CRISPRi/dCpf1-mediated dynamic metabolic switch to enhance butenoic acid production in Escherichia coli.
    Ji X; Zhao H; Zhu H; Zhu K; Tang SY; Lou C
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5385-5393. PubMed ID: 32338294
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Combining rational metabolic engineering and flux optimization strategies for efficient production of fumaric acid.
    Song CW; Lee SY
    Appl Microbiol Biotechnol; 2015 Oct; 99(20):8455-64. PubMed ID: 26194559
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Construction of a synthetic metabolic pathway for the production of 2,4-dihydroxybutyric acid from homoserine.
    Walther T; Calvayrac F; Malbert Y; Alkim C; Dressaire C; Cordier H; François JM
    Metab Eng; 2018 Jan; 45():237-245. PubMed ID: 29248755
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Metabolic engineering of Escherichia coli for the production of fumaric acid.
    Song CW; Kim DI; Choi S; Jang JW; Lee SY
    Biotechnol Bioeng; 2013 Jul; 110(7):2025-34. PubMed ID: 23436277
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification and engineering efflux transporters for improved L-homoserine production in Escherichia coli.
    Ding C; Zhang J; Qiao J; Ma Z; Liu P; Liu J; Liu Q; Xu N
    J Appl Microbiol; 2023 Apr; 134(4):. PubMed ID: 37061784
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of DR1558, a Deinococcus radiodurans response regulator, on the production of GABA in the recombinant Escherichia coli under low pH conditions.
    Park SH; Sohn YJ; Park SJ; Choi JI
    Microb Cell Fact; 2020 Mar; 19(1):64. PubMed ID: 32156293
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficient Production of Glucaric Acid by Engineered Saccharomyces cerevisiae.
    Zhao Y; Zuo F; Shu Q; Yang X; Deng Y
    Appl Environ Microbiol; 2023 Jun; 89(6):e0053523. PubMed ID: 37212714
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose.
    Chen X; Li M; Zhou L; Shen W; Algasan G; Fan Y; Wang Z
    Bioresour Technol; 2014 Aug; 166():64-71. PubMed ID: 24905044
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Construction of an L-serine producing Escherichia coli via metabolic engineering.
    Gu P; Yang F; Su T; Li F; Li Y; Qi Q
    J Ind Microbiol Biotechnol; 2014 Sep; 41(9):1443-50. PubMed ID: 24997624
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineering endogenous l-proline biosynthetic pathway to boost trans-4-hydroxy-l-proline production in Escherichia coli.
    Jiang L; Pang J; Yang L; Li W; Duan L; Zhang G; Luo Y
    J Biotechnol; 2021 Mar; 329():104-117. PubMed ID: 33539894
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolic engineering of Escherichia coli for poly(3-hydroxybutyrate) production via threonine bypass.
    Lin Z; Zhang Y; Yuan Q; Liu Q; Li Y; Wang Z; Ma H; Chen T; Zhao X
    Microb Cell Fact; 2015 Nov; 14():185. PubMed ID: 26589676
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-level and -yield production of L-leucine in engineered Escherichia coli by multistep metabolic engineering.
    Ding X; Yang W; Du X; Chen N; Xu Q; Wei M; Zhang C
    Metab Eng; 2023 Jul; 78():128-136. PubMed ID: 37286072
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metabolic engineering of Escherichia coli W3110 for the production of L-methionine.
    Li H; Wang BS; Li YR; Zhang L; Ding ZY; Gu ZH; Shi GY
    J Ind Microbiol Biotechnol; 2017 Jan; 44(1):75-88. PubMed ID: 27844169
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pathway Engineering for Phenethylamine Production in
    Xu D; Zhang L
    J Agric Food Chem; 2020 May; 68(21):5917-5926. PubMed ID: 32367713
    [TBL] [Abstract][Full Text] [Related]  

  • 59. L-Cysteine Production in Escherichia coli Based on Rational Metabolic Engineering and Modular Strategy.
    Liu H; Fang G; Wu H; Li Z; Ye Q
    Biotechnol J; 2018 May; 13(5):e1700695. PubMed ID: 29405609
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabolic engineering of Escherichia coli for the production of phenol from glucose.
    Kim B; Park H; Na D; Lee SY
    Biotechnol J; 2014 May; 9(5):621-9. PubMed ID: 24115680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.