BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32801391)

  • 1. Analytical solutions for a soil vapor extraction model that incorporates gas phase dispersion and molecular diffusion.
    Huang J; Goltz MN
    J Hydrol (Amst); 2017 Jun; 549():452-460. PubMed ID: 32801391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The vapor-phase multi-stage CMD test for characterizing contaminant mass discharge associated with VOC sources in the vadose zone: Application to three sites in different lifecycle stages of SVE operations.
    Brusseau ML; Mainhagu J; Morrison C; Carroll KC
    J Contam Hydrol; 2015 Aug; 179():55-64. PubMed ID: 26047819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical Model for Volatile Organic Compound Transport in the Coupled Vadose Zone-Groundwater System.
    Huang J
    J Hydrol Eng; 2021 Jan; 26(1):1-14. PubMed ID: 33628002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing performance and closure for soil vapor extraction: integrating vapor discharge and impact to groundwater quality.
    Carroll KC; Oostrom M; Truex MJ; Rohay VJ; Brusseau ML
    J Contam Hydrol; 2012 Feb; 128(1-4):71-82. PubMed ID: 22192346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical and experimental investigation of DNAPL removal mechanisms in a layered porous medium by means of soil vapor extraction.
    Yoon H; Oostrom M; Wietsma TW; Werth CJ; Valocchi AJ
    J Contam Hydrol; 2009 Oct; 109(1-4):1-13. PubMed ID: 19720427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling BTEX migration with soil vapor extraction remediation under low-temperature conditions.
    Yang Y; Li J; Xi B; Wang Y; Tang J; Wang Y; Zhao C
    J Environ Manage; 2017 Dec; 203(Pt 1):114-122. PubMed ID: 28779601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical solutions for contaminant fate and transport in parallel plate fracture-rock matrix systems with poiseuille flow.
    Huang J; Christ J; Goltz MN
    J Hydrol (Amst); 2021 May; 596():. PubMed ID: 34334810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of nonaqueous phase liquid (NAPL) source zone architecture on mass removal mechanisms in strongly layered heterogeneous porous media during soil vapor extraction.
    Yoon H; Werth CJ; Valocchi AJ; Oostrom M
    J Contam Hydrol; 2008 Aug; 100(1-2):58-71. PubMed ID: 18619707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of rate-limited sorption on the cleanup of layered soils by vapor extraction.
    Kaleris V
    J Contam Hydrol; 2002 Mar; 55(1-2):1-27. PubMed ID: 12000088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and Remediation of Chlorinated Volatile Organic Contaminants in the Vadose Zone: An Overview of Issues and Approaches.
    Brusseau ML; Carroll KC; Truex MJ; Becker DJ
    Vadose Zone J; 2013 Nov; 12(4):. PubMed ID: 25383058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ANALYSIS OF SOIL VAPOR EXTRACTION DATA TO EVALUATE MASS-TRANSFER CONSTRAINTS AND ESTIMATE SOURCE-ZONE MASS FLUX.
    Brusseau ML; Rohay V; Truex MJ
    Ground Water Monit Remediat; 2010; 30(3):57-64. PubMed ID: 23516336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using vapor phase tomography to measure the spatial distribution of vapor concentrations and flux for vadose-zone VOC sources.
    Mainhagu J; Morrison C; Brusseau ML
    J Contam Hydrol; 2015; 177-178():54-63. PubMed ID: 25835545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence mechanism of thermally enhanced phase change on heat transfer and soil vapour extraction.
    Zheng QT; Yang CB; Feng SJ; Wu SJ; Zhang XL
    J Contam Hydrol; 2023 Jul; 257():104202. PubMed ID: 37295261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of thin aquitards on two-dimensional solute transport in an aquifer.
    Rezaei A; Zhan H; Zare M
    J Contam Hydrol; 2013 Sep; 152():117-36. PubMed ID: 23906486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative importance of gas-phase diffusive and advective tichloroethene (TCE) fluxes in the unsaturated zone under natural conditions.
    Choi JW; Tillman FD; Smith JA
    Environ Sci Technol; 2002 Jul; 36(14):3157-64. PubMed ID: 12141498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional numerical model for soil vapor extraction.
    Nguyen VT; Zhao L; Zytner RG
    J Contam Hydrol; 2013 Apr; 147():82-95. PubMed ID: 23501944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axi-symmetric simulation of soil vapor extraction influenced by soil fracturing.
    Schulenber JW; Reeves HW
    J Contam Hydrol; 2002 Aug; 57(3-4):189-222. PubMed ID: 12180809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring spatial variability of vapor flux to characterize vadose-zone VOC sources: flow-cell experiments.
    Mainhagu J; Morrison C; Truex M; Oostrom M; Brusseau ML
    J Contam Hydrol; 2014 Oct; 167():32-43. PubMed ID: 25171394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling mass transfer during venting/soil vapour extraction: Non-aqueous phase liquid/gas mass transfer coefficient estimation.
    Esrael D; Kacem M; Benadda B
    J Contam Hydrol; 2017 Jul; 202():70-79. PubMed ID: 28559008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of multiphase transport models to field remediation by air sparging and soil vapor extraction.
    Rahbeh ME; Mohtar RH
    J Hazard Mater; 2007 May; 143(1-2):156-70. PubMed ID: 17141413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.