BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32801549)

  • 21. Effects of isobutyrate supplementation in pre- and post-weaned dairy calves diet on growth performance, rumen development, blood metabolites and hormone secretion.
    Wang C; Liu Q; Zhang YL; Pei CX; Zhang SL; Guo G; Huo WJ; Yang WZ; Wang H
    Animal; 2017 May; 11(5):794-801. PubMed ID: 27821226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Growth, ruminal measurements, and health characteristics of Holstein bull calves fed an Aspergillus oryzae fermentation extract.
    Yohe TT; O'Diam KM; Daniels KM
    J Dairy Sci; 2015 Sep; 98(9):6163-75. PubMed ID: 26142841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Associative effects of wet distiller's grains plus solubles and tannin-rich peanut skin supplementation on in vitro rumen fermentation, greenhouse gas emissions, and microbial changes1.
    Min BR; Castleberry L; Allen H; Parker D; Waldrip H; Brauer D; Willis W
    J Anim Sci; 2019 Nov; 97(11):4668-4681. PubMed ID: 31603200
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of amount of milk replacer fed and the processing of corn in starter on growth performance, nutrient digestibility, and rumen and fecal fibrolytic bacteria of dairy calves.
    van Niekerk JK; Fischer-Tlustos AJ; Deikun LL; Quigley JD; Dennis TS; Suarez-Mena FX; Hill TM; Schlotterbeck RL; Guan LL; Steele MA
    J Dairy Sci; 2020 Mar; 103(3):2186-2199. PubMed ID: 31954563
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of corn processing on growth characteristics, rumen development, and rumen parameters in neonatal dairy calves.
    Lesmeister KE; Heinrichs AJ
    J Dairy Sci; 2004 Oct; 87(10):3439-50. PubMed ID: 15377622
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differences in monocarboxylic acid transporter type 1 expression in rumen epithelium of newborn calves due to age and milk or milk replacer feeding.
    Flaga J; Górka P; Zabielski R; Kowalski ZM
    J Anim Physiol Anim Nutr (Berl); 2015 Jun; 99(3):521-30. PubMed ID: 24980113
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Feeding rumen-protected lysine to dairy cows prepartum improves performance and health of their calves.
    Thomas BL; Guadagnin AR; Fehlberg LK; Sugimoto Y; Shinzato I; Drackley JK; Cardoso FC
    J Dairy Sci; 2022 Mar; 105(3):2256-2274. PubMed ID: 34955262
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Essential oils for dairy calves: effects on performance, scours, rumen fermentation and intestinal fauna.
    Santos FH; De Paula MR; Lezier D; Silva JT; Santos G; Bittar CM
    Animal; 2015 Jun; 9(6):958-65. PubMed ID: 25690024
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Replacing soybean hulls with grass hay on growth, intake, total tract digestibility, and rumen microbial nitrogen production of weaned Holstein dairy calves from 8 to 16 weeks of age.
    Mitchell LK; Chishti GA; Dennis TS; Heinrichs AJ
    J Dairy Sci; 2021 Feb; 104(2):1714-1727. PubMed ID: 33309354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of different physical forms of wheat grain in corn-based starter on performance of young Holstein dairy calves.
    Pezhveh N; Ghorbani GR; Rezamand P; Khorvash M
    J Dairy Sci; 2014 Oct; 97(10):6382-90. PubMed ID: 25064647
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of the ruminal and fecal microbiotas in beef calves supplemented or not with concentrate.
    Lourenco JM; Kieran TJ; Seidel DS; Glenn TC; Silveira MFD; Callaway TR; Stewart RL
    PLoS One; 2020; 15(4):e0231533. PubMed ID: 32282837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of Saccharomyces cerevisiae fermentation products on dairy calves: Ruminal fermentation, gastrointestinal morphology, and microbial community.
    Xiao JX; Alugongo GM; Chung R; Dong SZ; Li SL; Yoon I; Wu ZH; Cao ZJ
    J Dairy Sci; 2016 Jul; 99(7):5401-5412. PubMed ID: 27157569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of oat hay provision method on growth performance, rumen fermentation and blood metabolites of dairy calves during preweaning and postweaning periods.
    Gasiorek M; Stefanska B; Pruszynska-Oszmalek E; Taciak M; Komisarek J; Nowak W
    Animal; 2020 Oct; 14(10):2054-2062. PubMed ID: 32308189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performance, profitability and greenhouse gas emissions of alternative finishing strategies for Holstein-Friesian bulls and steers.
    Murphy B; Crosson P; Kelly AK; Prendiville R
    Animal; 2018 Nov; 12(11):2391-2400. PubMed ID: 29402341
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparative study on rumen ecology of water buffalo and cattle calves under similar feeding regime.
    Wang Q; Gao X; Yang Y; Zou C; Yang Y; Lin B
    Vet Med Sci; 2020 Nov; 6(4):746-754. PubMed ID: 32657053
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows.
    van Gastelen S; Visker MHPW; Edwards JE; Antunes-Fernandes EC; Hettinga KA; Alferink SJJ; Hendriks WH; Bovenhuis H; Smidt H; Dijkstra J
    J Dairy Sci; 2017 Nov; 100(11):8939-8957. PubMed ID: 28918153
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The importance of calf sensory and physical preferences for starter concentrates during pre- and postweaning periods.
    Terré M; Devant M; Bach A
    J Dairy Sci; 2016 Sep; 99(9):7133-7142. PubMed ID: 27289146
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reconstituted versus dry alfalfa hay in starter feed diets of Holstein dairy calves: Effects on growth performance, nutrient digestibility, and metabolic indications of rumen development.
    Kargar S; Kanani M
    J Dairy Sci; 2019 May; 102(5):4051-4060. PubMed ID: 30879820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction between the physical form of the starter feed and straw provision on growth performance of Holstein calves.
    Terré M; Castells L; Khan MA; Bach A
    J Dairy Sci; 2015 Feb; 98(2):1101-9. PubMed ID: 25497821
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in in vitro gas and methane production from rumen fluid from dairy cows during adaptation to feed additives in vivo.
    Klop G; van Laar-van Schuppen S; Pellikaan WF; Hendriks WH; Bannink A; Dijkstra J
    Animal; 2017 Apr; 11(4):591-599. PubMed ID: 27748233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.