These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 32802032)

  • 1. Remaining Useful Life Estimation Using Deep Convolutional Generative Adversarial Networks Based on an Autoencoder Scheme.
    Hou G; Xu S; Zhou N; Yang L; Fu Q
    Comput Intell Neurosci; 2020; 2020():9601389. PubMed ID: 32802032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Remaining Useful Life Prognosis of Turbofan Engine Using Temporal and Spatial Feature Fusion.
    Peng C; Chen Y; Chen Q; Tang Z; Li L; Gui W
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33435633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remaining useful life prognosis of turbofan engines based on deep feature extraction and fusion.
    Peng C; Chen Y; Gui W; Tang Z; Li C
    Sci Rep; 2022 Apr; 12(1):6491. PubMed ID: 35444248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new ensemble residual convolutional neural network for remaining useful life estimation.
    Wen L; Dong Y; Gao L
    Math Biosci Eng; 2019 Jan; 16(2):862-880. PubMed ID: 30861669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robustness testing framework for RUL prediction Deep LSTM networks.
    Sayah M; Guebli D; Al Masry Z; Zerhouni N
    ISA Trans; 2021 Jul; 113():28-38. PubMed ID: 32646591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Double-Channel Hybrid Deep Neural Network Based on CNN and BiLSTM for Remaining Useful Life Prediction.
    Zhao C; Huang X; Li Y; Yousaf Iqbal M
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remaining Useful Life Estimation of Aircraft Engines Using a Joint Deep Learning Model Based on TCNN and Transformer.
    Wang HK; Cheng Y; Song K
    Comput Intell Neurosci; 2021; 2021():5185938. PubMed ID: 34868292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remaining Useful Life Prediction Using Dual-Channel LSTM with Time Feature and Its Difference.
    Peng C; Wu J; Wang Q; Gui W; Tang Z
    Entropy (Basel); 2022 Dec; 24(12):. PubMed ID: 36554221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Deep Adversarial Approach Based on Multi-Sensor Fusion for Semi-Supervised Remaining Useful Life Prognostics.
    Verstraete D; Droguett E; Modarres M
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31892260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning with Dynamically Weighted Loss Function for Sensor-Based Prognostics and Health Management.
    Rengasamy D; Jafari M; Rothwell B; Chen X; Figueredo GP
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32012944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Scheme with Acoustic Emission Hit Removal for the Remaining Useful Life Prediction of Concrete Structures.
    Nguyen TK; Ahmad Z; Kim JM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A similarity based methodology for machine prognostics by using kernel two sample test.
    Cai H; Jia X; Feng J; Li W; Pahren L; Lee J
    ISA Trans; 2020 Aug; 103():112-121. PubMed ID: 32171595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstructing secondary test database from PHM08 challenge data set.
    Bektas O; Jones JA; Sankararaman S; Roychoudhury I; Goebel K
    Data Brief; 2018 Dec; 21():2464-2469. PubMed ID: 30560154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Bidirectional Recurrent Neural Networks Ensemble for Remaining Useful Life Prediction of Aircraft Engine.
    Hu K; Cheng Y; Wu J; Zhu H; Shao X
    IEEE Trans Cybern; 2023 Apr; 53(4):2531-2543. PubMed ID: 34822334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A DLSTM-Network-Based Approach for Mechanical Remaining Useful Life Prediction.
    Liu Y; Liu Z; Zuo H; Jiang H; Li P; Li X
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-content image generation for drug discovery using generative adversarial networks.
    Hussain S; Anees A; Das A; Nguyen BP; Marzuki M; Lin S; Wright G; Singhal A
    Neural Netw; 2020 Dec; 132():353-363. PubMed ID: 32977280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time Series Forecasting and Classification Models Based on Recurrent with Attention Mechanism and Generative Adversarial Networks.
    Zhou K; Wang W; Hu T; Deng K
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33339314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-Time Prognostics of Engineered Systems under Time Varying External Conditions Based on the COX PHM and VARX Hybrid Approach.
    Zhu H
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33801314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Deep-Learning-Based Health Indicator Constructor Using Kullback-Leibler Divergence for Predicting the Remaining Useful Life of Concrete Structures.
    Nguyen TK; Ahmad Z; Kim JM
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A data-driven prognostics method for explicit health index assessment and improved remaining useful life prediction of bearings.
    Bilendo F; Badihi H; Lu N; Jiang B
    ISA Trans; 2021 May; ():. PubMed ID: 33985788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.