These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 32802032)

  • 21. druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico.
    Kadurin A; Nikolenko S; Khrabrov K; Aliper A; Zhavoronkov A
    Mol Pharm; 2017 Sep; 14(9):3098-3104. PubMed ID: 28703000
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Data-driven remaining useful life prediction via multiple sensor signals and deep long short-term memory neural network.
    Wu J; Hu K; Cheng Y; Zhu H; Shao X; Wang Y
    ISA Trans; 2020 Feb; 97():241-250. PubMed ID: 31300159
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Remaining Useful Life Prognosis for Turbofan Engine Using Explainable Deep Neural Networks with Dimensionality Reduction.
    Hong CW; Lee C; Lee K; Ko MS; Kim DE; Hur K
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33228051
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time Series Multiple Channel Convolutional Neural Network with Attention-Based Long Short-Term Memory for Predicting Bearing Remaining Useful Life.
    Jiang JR; Lee JE; Zeng YM
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31888110
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Remaining Useful Life Prediction Based on Adaptive SHRINKAGE Processing and Temporal Convolutional Network.
    Wang H; Yang J; Shi L; Wang R
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ensemble deep learning with multi-objective optimization for prognosis of rotating machinery.
    Ma M; Sun C; Mao Z; Chen X
    ISA Trans; 2020 Oct; ():. PubMed ID: 34756307
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generative Adversarial Network Image Synthesis Method for Skin Lesion Generation and Classification.
    Mutepfe F; Kalejahi BK; Meshgini S; Danishvar S
    J Med Signals Sens; 2021; 11(4):237-252. PubMed ID: 34820296
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep learning-based anomaly-onset aware remaining useful life estimation of bearings.
    Kamat PV; Sugandhi R; Kumar S
    PeerJ Comput Sci; 2021; 7():e795. PubMed ID: 34909464
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An enhanced CNN-LSTM remaining useful life prediction model for aircraft engine with attention mechanism.
    Li H; Wang Z; Li Z
    PeerJ Comput Sci; 2022; 8():e1084. PubMed ID: 36091994
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A New Multivariate Approach for Prognostics Based on Extreme Learning Machine and Fuzzy Clustering.
    Javed K; Gouriveau R; Zerhouni N
    IEEE Trans Cybern; 2015 Dec; 45(12):2626-39. PubMed ID: 25643420
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Semi-Supervised Framework with Autoencoder-Based Neural Networks for Fault Prognosis.
    Rosa TGD; Melani AHA; Pereira FH; Kashiwagi FN; Souza GFM; Salles GMO
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560107
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CT artifact correction for sparse and truncated projection data using generative adversarial networks.
    Podgorsak AR; Shiraz Bhurwani MM; Ionita CN
    Med Phys; 2021 Feb; 48(2):615-626. PubMed ID: 32996149
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stock Price Forecasting by a Deep Convolutional Generative Adversarial Network.
    Staffini A
    Front Artif Intell; 2022; 5():837596. PubMed ID: 35187477
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anomaly Detection for Sensor Signals Utilizing Deep Learning Autoencoder-Based Neural Networks.
    Esmaeili F; Cassie E; Nguyen HPT; Plank NOV; Unsworth CP; Wang A
    Bioengineering (Basel); 2023 Mar; 10(4):. PubMed ID: 37106591
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Video Anomaly Detection Based on Convolutional Recurrent AutoEncoder.
    Wang B; Yang C
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Data Augmentation for Motor Imagery Signal Classification Based on a Hybrid Neural Network.
    Zhang K; Xu G; Han Z; Ma K; Zheng X; Chen L; Duan N; Zhang S
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32796607
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep Learning for Joint Pilot Design and Channel Estimation in MIMO-OFDM Systems.
    Kang XF; Liu ZH; Yao M
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684816
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Spatio-Temporal Attention Mechanism Based Approach for Remaining Useful Life Prediction of Turbofan Engine.
    Peng C; Wu J; Tang Z; Yuan X; Li C
    Comput Intell Neurosci; 2022; 2022():9707940. PubMed ID: 36275974
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Towards Interpretable Deep Learning: A Feature Selection Framework for Prognostics and Health Management Using Deep Neural Networks.
    Figueroa Barraza J; López Droguett E; Martins MR
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502778
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep Convolutional Generative Adversarial Network (dcGAN) Models for Screening and Design of Small Molecules Targeting Cannabinoid Receptors.
    Bian Y; Wang J; Jun JJ; Xie XQ
    Mol Pharm; 2019 Nov; 16(11):4451-4460. PubMed ID: 31589460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.