These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32802150)

  • 1. A Comparative Analysis of Visual Encoding Models Based on Classification and Segmentation Task-Driven CNNs.
    Yu Z; Zhang C; Wang L; Tong L; Yan B
    Comput Math Methods Med; 2020; 2020():5408942. PubMed ID: 32802150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational mechanisms underlying cortical responses to the affordance properties of visual scenes.
    Bonner MF; Epstein RA
    PLoS Comput Biol; 2018 Apr; 14(4):e1006111. PubMed ID: 29684011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A visual encoding model based on deep neural networks and transfer learning for brain activity measured by functional magnetic resonance imaging.
    Zhang C; Qiao K; Wang L; Tong L; Hu G; Zhang RY; Yan B
    J Neurosci Methods; 2019 Sep; 325():108318. PubMed ID: 31255596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structurally-constrained encoding framework using a multi-voxel reduced-rank latent model for human natural vision.
    Ranjbar A; Suratgar AA; Menhaj MB; Abbasi-Asl R
    J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 38986451
    [No Abstract]   [Full Text] [Related]  

  • 5. Unveiling functions of the visual cortex using task-specific deep neural networks.
    Dwivedi K; Bonner MF; Cichy RM; Roig G
    PLoS Comput Biol; 2021 Aug; 17(8):e1009267. PubMed ID: 34388161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale parameters framework with large convolutional kernel for encoding visual fMRI activity information.
    Ma S; Wang L; Hou S; Zhang C; Yan B
    Cereb Cortex; 2024 Jul; 34(7):. PubMed ID: 38997209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seeing it all: Convolutional network layers map the function of the human visual system.
    Eickenberg M; Gramfort A; Varoquaux G; Thirion B
    Neuroimage; 2017 May; 152():184-194. PubMed ID: 27777172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A self-supervised deep neural network for image completion resembles early visual cortex fMRI activity patterns for occluded scenes.
    Svanera M; Morgan AT; Petro LS; Muckli L
    J Vis; 2021 Jul; 21(7):5. PubMed ID: 34259828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The feature-weighted receptive field: an interpretable encoding model for complex feature spaces.
    St-Yves G; Naselaris T
    Neuroimage; 2018 Oct; 180(Pt A):188-202. PubMed ID: 28645845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsupervised analysis of fMRI data using kernel canonical correlation.
    Hardoon DR; MourĂ£o-Miranda J; Brammer M; Shawe-Taylor J
    Neuroimage; 2007 Oct; 37(4):1250-9. PubMed ID: 17686634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examining the Coding Strength of Object Identity and Nonidentity Features in Human Occipito-Temporal Cortex and Convolutional Neural Networks.
    Xu Y; Vaziri-Pashkam M
    J Neurosci; 2021 May; 41(19):4234-4252. PubMed ID: 33789916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variational autoencoder: An unsupervised model for encoding and decoding fMRI activity in visual cortex.
    Han K; Wen H; Shi J; Lu KH; Zhang Y; Fu D; Liu Z
    Neuroimage; 2019 Sep; 198():125-136. PubMed ID: 31103784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning alters the tuning of functional magnetic resonance imaging patterns for visual forms.
    Zhang J; Meeson A; Welchman AE; Kourtzi Z
    J Neurosci; 2010 Oct; 30(42):14127-33. PubMed ID: 20962233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A failure to learn object shape geometry: Implications for convolutional neural networks as plausible models of biological vision.
    Heinke D; Wachman P; van Zoest W; Leek EC
    Vision Res; 2021 Dec; 189():81-92. PubMed ID: 34634753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance-optimized hierarchical models predict neural responses in higher visual cortex.
    Yamins DL; Hong H; Cadieu CF; Solomon EA; Seibert D; DiCarlo JJ
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8619-24. PubMed ID: 24812127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voxel-to-voxel predictive models reveal unexpected structure in unexplained variance.
    Mell MM; St-Yves G; Naselaris T
    Neuroimage; 2021 Sep; 238():118266. PubMed ID: 34129949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What evidence supports special processing for faces? A cautionary tale for fMRI interpretation.
    Cowell RA; Cottrell GW
    J Cogn Neurosci; 2013 Nov; 25(11):1777-93. PubMed ID: 23859648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image segmentation using a sparse coding model of cortical area V1.
    Spratling MW
    IEEE Trans Image Process; 2013 Apr; 22(4):1631-43. PubMed ID: 23269754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortex-based independent component analysis of fMRI time series.
    Formisano E; Esposito F; Di Salle F; Goebel R
    Magn Reson Imaging; 2004 Dec; 22(10):1493-504. PubMed ID: 15707799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.