BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 32802299)

  • 1. Wearable Active Electrode for sEMG Monitoring Using Two-Channel Brass Dry Electrodes with Reduced Electronics.
    Ruvalcaba JA; Gutiérrez MI; Vera A; Leija L
    J Healthc Eng; 2020; 2020():5950218. PubMed ID: 32802299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 0.67 μV-IIRN super-T Ω-Z
    Dabbaghian A; El-Hajj Y; Ghalamboran M; Grau G; Kassiri H
    IEEE Trans Biomed Circuits Syst; 2024 Feb; 18(1):3-15. PubMed ID: 37535484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A TDM-Based 16-Channel AFE ASIC With Enhanced System-Level CMRR for Wearable EEG Recording With Dry Electrodes.
    Tang T; Goh WL; Yao L; Gao Y
    IEEE Trans Biomed Circuits Syst; 2020 Jun; 14(3):516-524. PubMed ID: 32167908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active Electrodes for Wearable EEG Acquisition: Review and Electronics Design Methodology.
    Xu J; Mitra S; Van Hoof C; Yazicioglu RF; Makinwa KAA
    IEEE Rev Biomed Eng; 2017; 10():187-198. PubMed ID: 28113349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of a Novel Wearable Electromyography Patch for Monitoring Submental Muscle Activity During Swallowing: A Randomized Crossover Trial.
    Kantarcigil C; Kim MK; Chang T; Craig BA; Smith A; Lee CH; Malandraki GA
    J Speech Lang Hear Res; 2020 Oct; 63(10):3293-3310. PubMed ID: 32910735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Embedded, Eight Channel, Noise Canceling, Wireless, Wearable sEMG Data Acquisition System With Adaptive Muscle Contraction Detection.
    Ergeneci M; Gokcesu K; Ertan E; Kosmas P
    IEEE Trans Biomed Circuits Syst; 2018 Feb; 12(1):68-79. PubMed ID: 29377797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel wearable EMG sensors based on nanowire technology.
    Myers A; Lin Du ; He Huang ; Yong Zhu
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1674-7. PubMed ID: 25570296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-density 256-channel cap for dry electroencephalography.
    Fiedler P; Fonseca C; Supriyanto E; Zanow F; Haueisen J
    Hum Brain Mapp; 2022 Mar; 43(4):1295-1308. PubMed ID: 34796574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance assessment of dry electrodes for wearable long term cardiac rhythm monitoring: Skin-electrode impedance spectroscopy.
    Bosnjak A; Kennedy A; Linares P; Borges M; McLaughlin J; Escalona OJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1861-1864. PubMed ID: 29060253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validity and Reliability of Surface Electromyography Measurements from a Wearable Athlete Performance System.
    Lynn SK; Watkins CM; Wong MA; Balfany K; Feeney DF
    J Sports Sci Med; 2018 Jun; 17(2):205-215. PubMed ID: 29769821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Multi-Day Wearable Surface EMG E-Tattoo for Fatigue Monitoring.
    Huh H; Yang X; Shin H; Lu N
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Novel Embroidered Textile-Electrodes Made from Hybrid Polyamide Conductive Threads for Surface EMG Sensing.
    Etana BB; Malengier B; Kwa T; Krishnamoorthy J; Langenhove LV
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Power High-Input-Impedance EEG Signal Acquisition SoC With Fully Integrated IA and Signal-Specific ADC for Wearable Applications.
    Tohidi M; Kargaard Madsen J; Moradi F
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1437-1450. PubMed ID: 31443053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introduction of a sEMG Sensor System for Autonomous Use by Inexperienced Users.
    Romero Avila E; Junker E; Disselhorst-Klug C
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33371409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance Evaluation of a Wearable Tattoo Electrode Suitable for High-Resolution Surface Electromyogram Recording.
    Chandra S; Li J; Afsharipour B; Cardona AF; Suresh NL; Tian L; Deng Y; Zhong Y; Xie Z; Shen H; Huang Y; Rogers JA; Rymer WZ
    IEEE Trans Biomed Eng; 2021 Apr; 68(4):1389-1398. PubMed ID: 33079653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myoelectric Signal Classification of Targeted Muscles Using Dictionary Learning.
    Yoo HJ; Park HJ; Lee B
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31126025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Surface Electromyography (sEMG) System Applied for Grip Force Monitoring.
    Wu D; Tian P; Zhang S; Wang Q; Yu K; Wang Y; Gao Z; Huang L; Li X; Zhai X; Tian M; Huang C; Zhang H; Zhang J
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal Quality and Electrode-Skin Impedance Evaluation in the Context of Wearable Electroencephalographic Systems.
    Zhao Z; Ivanov K; Lubich L; Omisore OM; Mei Z; Fu N; Chen J; Wang L
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4965-4968. PubMed ID: 30441456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and Characterization of Embroidery-Based Textile Electrodes for Surface EMG Detection.
    Kim H; Kim S; Lim D; Jeong W
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Preliminary Usability Study of Integrated Electronic Tattoo Surface Electromyography (sEMG) Sensors.
    Lim J; Sun M; Liu JZ; Tan Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.