BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32803029)

  • 1. Mild and Versatile Functionalization of Nacre-Mimetic Cellulose Nanofibrils/Clay Nanocomposites by Organocatalytic Surface Engineering.
    Alimohammadzadeh R; Medina L; Deiana L; Berglund LA; Córdova A
    ACS Omega; 2020 Aug; 5(31):19363-19370. PubMed ID: 32803029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired Interface Engineering for Moisture Resistance in Nacre-Mimetic Cellulose Nanofibrils/Clay Nanocomposites.
    Yao K; Huang S; Tang H; Xu Y; Buntkowsky G; Berglund LA; Zhou Q
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):20169-20178. PubMed ID: 28530799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glass Transition Temperature Regulates Mechanical Performance in Nacre-Mimetic Nanocomposites.
    Lossada F; Abbasoglu T; Jiao D; Hoenders D; Walther A
    Macromol Rapid Commun; 2020 Oct; 41(20):e2000380. PubMed ID: 32909331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conducting, Self-Assembled, Nacre-Mimetic Polymer/Clay Nanocomposites.
    Mäkiniemi RO; Das P; Hönders D; Grygiel K; Cordella D; Detrembleur C; Yuan J; Walther A
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):15681-5. PubMed ID: 26176348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile and On-Demand Cross-Linking of Nacre-Mimetic Nanocomposites Using Tailor-Made Polymers with Latent Reactivity.
    Jiao D; Guo J; Eckert A; Hoenders D; Lossada F; Walther A
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20250-20255. PubMed ID: 29856207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired Ternary Artificial Nacre Nanocomposites Based on Reduced Graphene Oxide and Nanofibrillar Cellulose.
    Duan J; Gong S; Gao Y; Xie X; Jiang L; Cheng Q
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10545-50. PubMed ID: 27054460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of nacre-like polymer/clay nanocomposites with water-resistant and self-adhesion properties.
    Sung K; Nakagawa S; Kim C; Yoshie N
    J Colloid Interface Sci; 2020 Mar; 564():113-123. PubMed ID: 31911217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile access to large-scale, self-assembled, nacre-inspired, high-performance materials with tunable nanoscale periodicities.
    Das P; Schipmann S; Malho JM; Zhu B; Klemradt U; Walther A
    ACS Appl Mater Interfaces; 2013 May; 5(9):3738-47. PubMed ID: 23534374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smart Nacre-inspired Nanocomposites.
    Peng J; Cheng Q
    Chemphyschem; 2018 Aug; 19(16):1980-1986. PubMed ID: 29542848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recyclable and Light-Adaptive Vitrimer-Based Nacre-Mimetic Nanocomposites.
    Lossada F; Jiao D; Hoenders D; Walther A
    ACS Nano; 2021 Mar; 15(3):5043-5055. PubMed ID: 33630585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal Nanoparticle Growth within Clay-Polymer Nacre-Inspired Materials for Improved Catalysis and Plasmonic Detection in Complex Biofluids.
    Hill EH; Hanske C; Johnson A; Yate L; Jelitto H; Schneider GA; Liz-Marzán LM
    Langmuir; 2017 Sep; 33(35):8774-8783. PubMed ID: 28502180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Assembled Bioinspired Nanocomposites.
    Lossada F; Hoenders D; Guo J; Jiao D; Walther A
    Acc Chem Res; 2020 Nov; 53(11):2622-2635. PubMed ID: 32991139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple approach to prepare self-assembled, nacre-inspired clay/polymer nanocomposites.
    Xu P; Erdem T; Eiser E
    Soft Matter; 2020 Jun; 16(23):5497-5505. PubMed ID: 32490440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-Adaptive Supramolecular Nacre-Mimetic Nanocomposites.
    Zhu B; Noack M; Merindol R; Barner-Kowollik C; Walther A
    Nano Lett; 2016 Aug; 16(8):5176-82. PubMed ID: 27455047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired approach to enhance mechanical properties of starch based nacre-mimetic nanocomposite.
    Li J; Zhou M; Cheng F; Lin Y; Zhu P
    Carbohydr Polym; 2019 Oct; 221():113-119. PubMed ID: 31227149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging Inelastic Fracture Processes in Biomimetic Nanocomposites and Nacre by Laser Speckle for Better Toughness.
    Verho T; Karppinen P; Gröschel AH; Ikkala O
    Adv Sci (Weinh); 2018 Jan; 5(1):1700635. PubMed ID: 29375979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nacre-inspired nanocomposites produced using layer-by-layer assembly: Design strategies and biomedical applications.
    Rodrigues JR; Alves NM; Mano JF
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():1263-1273. PubMed ID: 28482494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room-Temperature Phosphorescence Enabled through Nacre-Mimetic Nanocomposite Design.
    Yao X; Wang J; Jiao D; Huang Z; Mhirsi O; Lossada F; Chen L; Haehnle B; Kuehne AJC; Ma X; Tian H; Walther A
    Adv Mater; 2021 Feb; 33(5):e2005973. PubMed ID: 33346394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanoparticle functionalized artificial nacre: facile in situ growth of nanoparticles on montmorillonite nanosheets, self-assembly, and their multiple properties.
    Yao HB; Mao LB; Yan YX; Cong HP; Lei X; Yu SH
    ACS Nano; 2012 Sep; 6(9):8250-60. PubMed ID: 22909252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructural Effects in High Cellulose Content Thermoplastic Nanocomposites with a Covalently Grafted Cellulose-Poly(methyl methacrylate) Interface.
    Boujemaoui A; Ansari F; Berglund LA
    Biomacromolecules; 2019 Feb; 20(2):598-607. PubMed ID: 30047261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.