These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32803053)

  • 41. Oxidative Dehydrogenation on Nanocarbon: Insights into the Reaction Mechanism and Kinetics via in Situ Experimental Methods.
    Qi W; Yan P; Su DS
    Acc Chem Res; 2018 Mar; 51(3):640-648. PubMed ID: 29446621
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of metal-ion containing catalysts for the decomposition of phosphorothioate esters.
    Edwards DR; Brown RS
    Biochim Biophys Acta; 2013 Jan; 1834(1):433-42. PubMed ID: 22381961
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of the Performance of the B3LYP, PBE0, and M06 DFT Functionals, and DBLOC-Corrected Versions, in the Calculation of Redox Potentials and Spin Splittings for Transition Metal Containing Systems.
    Coskun D; Jerome SV; Friesner RA
    J Chem Theory Comput; 2016 Mar; 12(3):1121-8. PubMed ID: 26808695
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Minimising hydrogen sulphide generation during steam assisted production of heavy oil.
    Montgomery W; Sephton MA; Watson JS; Zeng H; Rees AC
    Sci Rep; 2015 Feb; 5():8159. PubMed ID: 25670085
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Understanding and Quantifying London Dispersion Effects in Organometallic Complexes.
    Bursch M; Caldeweyher E; Hansen A; Neugebauer H; Ehlert S; Grimme S
    Acc Chem Res; 2019 Jan; 52(1):258-266. PubMed ID: 30586286
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluating the catalytic activity of transition metal dimers for the oxygen reduction reaction.
    Liang Z; Luo M; Chen M; Liu C; Peera SG; Qi X; Liu J; Kumar UP; Liang TLT
    J Colloid Interface Sci; 2020 May; 568():54-62. PubMed ID: 32078938
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The remarkable effect of alkali earth metal ion on the catalytic activity of OMS-2 for benzene oxidation.
    Ni C; Hou J; Li L; Li Y; Wang M; Yin H; Tan W
    Chemosphere; 2020 Jul; 250():126211. PubMed ID: 32113097
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Catalytic cleavage of cis- and trans-acting antigenomic delta ribozymes in the presence of various divalent metal ions.
    Wrzesinski J; Legiewicz M; Smólska B; Ciesiolka J
    Nucleic Acids Res; 2001 Nov; 29(21):4482-92. PubMed ID: 11691936
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metal complexation and biodegradation of EDTA and S,S-EDDS: a density functional theory study.
    Chen L; Liu T; Ma C
    J Phys Chem A; 2010 Jan; 114(1):443-54. PubMed ID: 20017479
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase.
    Hong SB; Raushel FM
    Biochemistry; 1996 Aug; 35(33):10904-12. PubMed ID: 8718883
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The accuracy of DFT-optimized geometries of functional transition metal compounds: a validation study of catalysts for olefin metathesis and other reactions in the homogeneous phase.
    Minenkov Y; Singstad A; Occhipinti G; Jensen VR
    Dalton Trans; 2012 May; 41(18):5526-41. PubMed ID: 22430848
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Highly Dispersed Metal Carbide on ZIF-Derived Pyridinic-N-Doped Carbon for CO
    Li Y; Cai X; Chen S; Zhang H; Zhang KHL; Hong J; Chen B; Kuo DH; Wang W
    ChemSusChem; 2018 Mar; 11(6):1040-1047. PubMed ID: 29424046
    [TBL] [Abstract][Full Text] [Related]  

  • 53. N-H bond activation in ammonia by TM-SSZ-13 (Fe, Co, Ni and Cu) zeolites: a first-principles calculation.
    Wang L; Chen H; Wang W
    Phys Chem Chem Phys; 2019 Jan; 21(3):1506-1513. PubMed ID: 30608503
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A DFT study on the metal ion selectivity of deferiprone complexes.
    Kaviani S; Izadyar M; Housaindokht MR
    Comput Biol Chem; 2020 Jun; 86():107267. PubMed ID: 32470911
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Heavy metal removal and crude bio-oil upgrading from Sedum plumbizincicola harvest using hydrothermal upgrading process.
    Yang JG
    Bioresour Technol; 2010 Oct; 101(19):7653-7. PubMed ID: 20578290
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Catalytic Efficiency Is a Function of How Rhodium(I) (5 + 2) Catalysts Accommodate a Conserved Substrate Transition State Geometry: Induced Fit Model for Explaining Transition Metal Catalysis.
    Mustard TJ; Wender PA; Cheong PH
    ACS Catal; 2015 Mar; 5(3):1758-1763. PubMed ID: 26146588
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Removal of H
    Mudchimo T; Kamchompoo S; Injongkol Y; Rattanawan R; Kungwan N; Jungsuttiwong S
    Phys Chem Chem Phys; 2020 Sep; 22(35):19877-19887. PubMed ID: 32852020
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge.
    Bayat B; Sari B
    J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 60. DFT study of 1-butyl-3-methylimidazolium salicylate: a third-generation ionic liquid.
    Armaković S; Armaković SJ; Vraneš M; Tot A; Gadžurić S
    J Mol Model; 2015 Sep; 21(9):246. PubMed ID: 26318199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.