These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32803205)

  • 1. Organ-on-a-chip systems: translating concept into practice.
    Shuler ML
    Lab Chip; 2020 Aug; 20(17):3072-3073. PubMed ID: 32803205
    [No Abstract]   [Full Text] [Related]  

  • 2. Organ-, body- and disease-on-a-chip systems.
    Shuler ML
    Lab Chip; 2017 Jul; 17(14):2345-2346. PubMed ID: 28671705
    [No Abstract]   [Full Text] [Related]  

  • 3. AKR1B10 (Aldo-keto reductase family 1 B10) promotes brain metastasis of lung cancer cells in a multi-organ microfluidic chip model.
    Liu W; Song J; Du X; Zhou Y; Li Y; Li R; Lyu L; He Y; Hao J; Ben J; Wang W; Shi H; Wang Q
    Acta Biomater; 2019 Jun; 91():195-208. PubMed ID: 31034948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic interface technology based on stereolithography for glass-based lab-on-a-chips.
    Han SI; Han KH
    Methods Mol Biol; 2013; 949():169-84. PubMed ID: 23329443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
    Yang Z; Dong T; Halvorsen E
    Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organ-on-a-chip devices advance to market.
    Zhang B; Radisic M
    Lab Chip; 2017 Jul; 17(14):2395-2420. PubMed ID: 28617487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lab-on-a-chip technologies for stem cell analysis.
    Ertl P; Sticker D; Charwat V; Kasper C; Lepperdinger G
    Trends Biotechnol; 2014 May; 32(5):245-53. PubMed ID: 24726257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in lab-on-a-chip for biosensing applications.
    Lafleur JP; Jönsson A; Senkbeil S; Kutter JP
    Biosens Bioelectron; 2016 Feb; 76():213-33. PubMed ID: 26318580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple functions of microfluidic platforms: Characterization and applications in tissue engineering and diagnosis of cancer.
    Davaran S; Sadeghinia M; Jamalpoor Z; Raeisdasteh Hokmabad V; Doosti-Telgerd M; Karimian A; Sadeghinia Z; Khalilifard J; Keramt A; Moradikhah F; Sadeghinia A
    Electrophoresis; 2020 Jun; 41(12):1081-1094. PubMed ID: 32103511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization.
    Wang J; He Y; Xia H; Niu LG; Zhang R; Chen QD; Zhang YL; Li YF; Zeng SJ; Qin JH; Lin BC; Sun HB
    Lab Chip; 2010 Aug; 10(15):1993-6. PubMed ID: 20508876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale variation-aware techniques for high-performance digital microfluidic lab-on-a-chip component placement.
    Liao C; Hu S
    IEEE Trans Nanobioscience; 2011 Mar; 10(1):51-8. PubMed ID: 21511570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in Microfluidic Blood-Brain Barrier (BBB) Models.
    Oddo A; Peng B; Tong Z; Wei Y; Tong WY; Thissen H; Voelcker NH
    Trends Biotechnol; 2019 Dec; 37(12):1295-1314. PubMed ID: 31130308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Powering ex vivo tissue models in microfluidic systems.
    McLean IC; Schwerdtfeger LA; Tobet SA; Henry CS
    Lab Chip; 2018 May; 18(10):1399-1410. PubMed ID: 29697131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidics, Nanofluidics, and Lab-on-a-Chip in Asia 2019.
    Xuan X; Kang Y; Sun J
    Electrophoresis; 2020 Jun; 41(10-11):757. PubMed ID: 32485014
    [No Abstract]   [Full Text] [Related]  

  • 16. In Vitro Microfluidic Models for Neurodegenerative Disorders.
    Osaki T; Shin Y; Sivathanu V; Campisi M; Kamm RD
    Adv Healthc Mater; 2018 Jan; 7(2):. PubMed ID: 28881425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comment on "Robust scalable high throughput production of monodisperse drops" by E. Amstad, M. Chemama, M. Eggersdorfer, L. R. Arriaga, M. P. Brenner and D. A. Weitz, Lab Chip, 2016, 16, 4163.
    Nakajima M
    Lab Chip; 2017 Jun; 17(13):2330-2331. PubMed ID: 28603798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Making Microfluidic Devices that Simulate Phloem Transport.
    Comtet J
    Methods Mol Biol; 2019; 2014():397-408. PubMed ID: 31197811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: A review.
    Liao Z; Zhang Y; Li Y; Miao Y; Gao S; Lin F; Deng Y; Geng L
    Biosens Bioelectron; 2019 Feb; 126():697-706. PubMed ID: 30544083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical approach-based simulation to predict cerebrovascular shear stress in a blood-brain barrier organ-on-a-chip.
    Jeong S; Seo JH; Garud KS; Park SW; Lee MY
    Biosens Bioelectron; 2021 Jul; 183():113197. PubMed ID: 33819903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.