BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32803317)

  • 1. Gender-specific SBNO2 and VPS13B as a potential driver of osteoporosis development in male ankylosing spondylitis.
    Li T; Liu WB; Tian FF; Jiang JJ; Wang Q; Hu FQ; Hu WH; Zhang XS
    Osteoporos Int; 2021 Feb; 32(2):311-320. PubMed ID: 32803317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SIRT1 and ZNF350 as novel biomarkers for osteoporosis: a bioinformatics analysis and experimental validation.
    Zhu N; Hou J; Si J; Yang N; Chen B; Wei X; Zhu L
    Mol Biol Rep; 2024 Apr; 51(1):530. PubMed ID: 38637425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploration of the shared pathways and common biomarker PAN3 in ankylosing spondylitis and ulcerative colitis using integrated bioinformatics analysis.
    Zhang M; Zhou J; Wang H; He L; Wang J; Yang X; Zhong X
    Front Immunol; 2023; 14():1089622. PubMed ID: 36742304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of immune related cells and crucial genes in the peripheral blood of ankylosing spondylitis by integrated bioinformatics analysis.
    Zheng Y; Cai B; Ren C; Xu H; Du W; Wu Y; Lin F; Zhang H; Quan R
    PeerJ; 2021; 9():e12125. PubMed ID: 34589304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening for Key Pathways Associated with the Development of Osteoporosis by Bioinformatics Analysis.
    Liu Y; Wang Y; Zhang Y; Liu Z; Xiang H; Peng X; Chen B; Jia G
    Biomed Res Int; 2017; 2017():8589347. PubMed ID: 28466021
    [No Abstract]   [Full Text] [Related]  

  • 6. PDGFRB as a potential therapeutic target of ankylosing spondylitis: validation following bioinformatics analysis.
    Feng X; Zhu S; Yan Z; Wang C; Tong W; Xu W
    Cell Mol Biol (Noisy-le-grand); 2020 Sep; 66(6):127-134. PubMed ID: 33040798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Drug Discovery in Ankylosing Spondylitis-Induced Osteoporosis Based on Data Mining and Bioinformatics Analysis.
    Wang C; Wang L; Li Q; Wu W; Yuan J; Wang H; Lu X
    World Neurosurg; 2023 Jun; 174():e8-e16. PubMed ID: 36716856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive analysis of the m6A-related molecular patterns and diagnostic biomarkers in osteoporosis.
    Bai Q; Shi M; Sun X; Lou Q; Peng H; Qu Z; Fan J; Dai L
    Front Endocrinol (Lausanne); 2022; 13():957742. PubMed ID: 36034449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prognostic analysis and validation of diagnostic marker genes in patients with osteoporosis.
    Wang X; Pei Z; Hao T; Ariben J; Li S; He W; Kong X; Chang J; Zhao Z; Zhang B
    Front Immunol; 2022; 13():987937. PubMed ID: 36311708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring hub pyroptosis-related genes, molecular subtypes, and potential drugs in ankylosing spondylitis by comprehensive bioinformatics analysis and molecular docking.
    Li X; Li X; Wang H; Zhao X
    BMC Musculoskelet Disord; 2023 Jun; 24(1):532. PubMed ID: 37386410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Insights into the Regulatory Role of Ferroptosis in Ankylosing Spondylitis via Consensus Clustering of Ferroptosis-Related Genes and Weighted Gene Co-Expression Network Analysis.
    Rong T; Jia N; Wu B; Sang D; Liu B
    Genes (Basel); 2022 Jul; 13(8):. PubMed ID: 36011284
    [No Abstract]   [Full Text] [Related]  

  • 12. Identification of potential biomarkers for ankylosing spondylitis based on bioinformatics analysis.
    Li D; Cao R; Dong W; Cheng M; Pan X; Hu Z; Hao J
    BMC Musculoskelet Disord; 2023 May; 24(1):413. PubMed ID: 37226132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel prognostic 6-gene signature for osteoporosis.
    Zhao Y; Yan J; Zhu Y; Han Z; Li T; Wang L
    Front Endocrinol (Lausanne); 2022; 13():968397. PubMed ID: 36213260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PLCG2 and IFNAR1: The Potential Biomarkers Mediated by Immune Infiltration and Osteoclast Differentiation of Ankylosing Spondylitis in the Peripheral Blood.
    Han B; Xie Q; Liang W; Yin P; Qu X; Hai Y
    Mediators Inflamm; 2024; 2024():3358184. PubMed ID: 38223749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low expression of TCP1 (T-Complex 1) and PSMC1 (Proteasome 26S subunit, ATPase 1) in heterotopic ossification during ankylosing spondylitis.
    Zhong XL; Qian BP; Huang JC; Zhao SZ; Li Y; Qiu Y
    Bioengineered; 2021 Dec; 12(1):7459-7469. PubMed ID: 34612770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinformatics Analysis of Immune Cell Infiltration and Diagnostic Biomarkers between Ankylosing Spondylitis and Inflammatory Bowel Disease.
    Zhang X; Chen T; Qian X; He X
    Comput Math Methods Med; 2023; 2023():9065561. PubMed ID: 36643579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of hub genes associated with osteoporosis development by comprehensive bioinformatics analysis.
    Deng Y; Wang Y; Shi Q; Jiang Y
    Front Genet; 2023; 14():1028681. PubMed ID: 36911390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of biomarkers associated with oxidative stress-related genes in postmenopausal osteoporosis.
    Liu D; Hu Z; Tang Z; Li P; Yuan W; Li F; Chen Q
    Cell Mol Biol (Noisy-le-grand); 2023 Jun; 69(6):186-192. PubMed ID: 37605572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic Identification of Key Functional Modules and Genes in Gastric Cancer.
    Wu R; Sun JY; Zhao LL; Fan ZN; Yang C
    Biomed Res Int; 2020; 2020():8853348. PubMed ID: 33282955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Hub Genes in High-Grade Serous Ovarian Cancer Using Weighted Gene Co-Expression Network Analysis.
    Wu M; Sun Y; Wu J; Liu G
    Med Sci Monit; 2020 Mar; 26():e922107. PubMed ID: 32180586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.