These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 32803519)

  • 1. A Three-Treatment Two-Stage Design for Selection of a Candidate Formulation and Subsequent Demonstration of Bioequivalence.
    Fuglsang A
    AAPS J; 2020 Aug; 22(5):109. PubMed ID: 32803519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequential bioequivalence approaches for parallel designs.
    Fuglsang A
    AAPS J; 2014 May; 16(3):373-8. PubMed ID: 24526610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the upper sample size limit in two-stage bioequivalence designs.
    Karalis V
    Int J Pharm; 2013 Nov; 456(1):87-94. PubMed ID: 23954235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sequential bioequivalence design with a potential ethical advantage.
    Fuglsang A
    AAPS J; 2014 Jul; 16(4):843-6. PubMed ID: 24871343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The bioequivalence of highly variable drugs and drug products.
    Midha KK; Rawson MJ; Hubbard JW
    Int J Clin Pharmacol Ther; 2005 Oct; 43(10):485-98. PubMed ID: 16240706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pilot and Repeat Trials as Development Tools Associated with Demonstration of Bioequivalence.
    Fuglsang A
    AAPS J; 2015 May; 17(3):678-83. PubMed ID: 25732246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the leveling-off properties of the new bioequivalence limits for highly variable drugs of the EMA guideline.
    Karalis V; Symillides M; Macheras P
    Eur J Pharm Sci; 2011 Nov; 44(4):497-505. PubMed ID: 21945487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sample sizes for designing bioequivalence studies for highly variable drugs.
    Tothfalusi L; Endrenyi L
    J Pharm Pharm Sci; 2012; 15(1):73-84. PubMed ID: 22365089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential bioequivalence trial designs with increased power and controlled type I error rates.
    Fuglsang A
    AAPS J; 2013 Jul; 15(3):659-61. PubMed ID: 23543603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory and study conditions for the determination of bioequivalence of highly variable drugs.
    Endrenyi L; Tothfalusi L
    J Pharm Pharm Sci; 2009; 12(1):138-49. PubMed ID: 19470298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioequivalence of highly variable drugs: a comparison of the newly proposed regulatory approaches by FDA and EMA.
    Karalis V; Symillides M; Macheras P
    Pharm Res; 2012 Apr; 29(4):1066-77. PubMed ID: 22203326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Additional results for 'Sequential design approaches for bioequivalence studies with crossover designs'.
    Montague TH; Potvin D; Diliberti CE; Hauck WW; Parr AF; Schuirmann DJ
    Pharm Stat; 2012; 11(1):8-13. PubMed ID: 21308974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacokinetics, bioequivalence, tolerability, and effects on platelet counts of two formulations of anagrelide in healthy volunteers and patients with thrombocythemia associated with chronic myeloproliferation.
    Petrides PE; Gisslinger H; Steurer M; Linkesch W; Krumpl G; Schüller A; Widmann R
    Clin Ther; 2009 Feb; 31(2):386-98. PubMed ID: 19302911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the type I error rate in two-stage sequential adaptive designs when testing for average bioequivalence.
    Maurer W; Jones B; Chen Y
    Stat Med; 2018 May; 37(10):1587-1607. PubMed ID: 29462835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative confidence intervals for the assessment of bioequivalence in four-period cross-over designs.
    Quiroz J; Ting N; Wei GC; Burdick RK
    Stat Med; 2002 Jul; 21(13):1825-47. PubMed ID: 12111892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioequivalence of tacrolimus formulations with different dynamic solubility and in-vitro dissolution profiles.
    Kwon M; Yeom D; Kim NA; Choi du H; Park J; Wang H; Yoo SD; Jeong SH
    Arch Pharm Res; 2015 Jan; 38(1):73-80. PubMed ID: 24627339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exposure measures applied to the bioequivalence of two sustained release formulations of bupropion.
    Midha KK; Rawson MJ; McKay G; Hubbard JW
    Int J Clin Pharmacol Ther; 2005 May; 43(5):244-54. PubMed ID: 15906590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the reference scaled bioequivalence semi-replicate method with other approaches: focus on human exposure to drugs.
    Karalis V; Symillides M; Macheras P
    Eur J Pharm Sci; 2009 Aug; 38(1):55-63. PubMed ID: 19524039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling type I error in the reference-scaled bioequivalence evaluation of highly variable drugs.
    Ocaña J; Muñoz J
    Pharm Stat; 2019 Oct; 18(5):583-599. PubMed ID: 31190418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioequivalence evaluation of two brands of lisinopril tablets by in vitro comparative dissolution test and in vivo bioequivalence test.
    Shin MC; Kim JK; Kim CK
    Arzneimittelforschung; 2008; 58(1):11-7. PubMed ID: 18368945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.