These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32803848)

  • 1. A Biomimetic Nano-Engineered Platform for Functional Tissue Engineering of Cartilage Superficial Zone.
    Dehghan-Baniani D; Mehrjou B; Chu PK; Wu H
    Adv Healthc Mater; 2021 Feb; 10(4):e2001018. PubMed ID: 32803848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic Injectable Hydrogel Based on Methacrylate-Modified Silk Fibroin Embedded with Kartogenin for Superficial Cartilage Regeneration.
    Li H; Tong Z; Fang Y; Liu F; He F; Teng C
    ACS Biomater Sci Eng; 2024 Jan; 10(1):507-514. PubMed ID: 38118054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Injectable in situ forming kartogenin-loaded chitosan hydrogel with tunable rheological properties for cartilage tissue engineering.
    Dehghan-Baniani D; Chen Y; Wang D; Bagheri R; Solouk A; Wu H
    Colloids Surf B Biointerfaces; 2020 Apr; 192():111059. PubMed ID: 32380404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cartilage Regeneration in Preannealed Silk Elastin-Like Co-Recombinamers Injectable Hydrogel Embedded with Mature Chondrocytes in an Ex Vivo Culture Platform.
    Cipriani F; Krüger M; de Torre IG; Sierra LQ; Rodrigo MA; Kock L; Rodriguez-Cabello JC
    Biomacromolecules; 2018 Nov; 19(11):4333-4347. PubMed ID: 30346149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering.
    Mirahmadi F; Tafazzoli-Shadpour M; Shokrgozar MA; Bonakdar S
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4786-94. PubMed ID: 24094188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injectable double-crosslinked hydrogels with kartogenin-conjugated polyurethane nano-particles and transforming growth factor β3 for in-situ cartilage regeneration.
    Fan W; Yuan L; Li J; Wang Z; Chen J; Guo C; Mo X; Yan Z
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110705. PubMed ID: 32204019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering sulfated polysaccharides and silk fibroin based injectable IPN hydrogels with stiffening and growth factor presentation abilities for cartilage tissue engineering.
    Dixit A; Mahajan A; Saxena R; Chakraborty S; Katti DS
    Biomater Sci; 2024 Apr; 12(8):2067-2085. PubMed ID: 38470831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic approach for an articular cartilage patch: Combination of decellularized cartilage matrix and silk-elastin-like-protein (SELP) hydrogel.
    Ravanetti F; Borghetti P; Zoboli M; Veloso PM; De Angelis E; Ciccimarra R; Saleri R; Cacchioli A; Gazza F; Machado R; Ragionieri L; Attanasio C
    Ann Anat; 2023 Oct; 250():152144. PubMed ID: 37574174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved accumulation of TGF-β by photopolymerized chitosan/silk protein bio-hydrogel matrix to improve differentiations of mesenchymal stem cells in articular cartilage tissue regeneration.
    Shao J; Ding Z; Li L; Chen Y; Zhu J; Qian Q
    J Photochem Photobiol B; 2020 Jan; 203():111744. PubMed ID: 31887637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silk fibroin/carboxymethyl chitosan hydrogel with tunable biomechanical properties has application potential as cartilage scaffold.
    Li T; Song X; Weng C; Wang X; Gu L; Gong X; Wei Q; Duan X; Yang L; Chen C
    Int J Biol Macromol; 2019 Sep; 137():382-391. PubMed ID: 31271796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs.
    Ziadlou R; Rotman S; Teuschl A; Salzer E; Barbero A; Martin I; Alini M; Eglin D; Grad S
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111701. PubMed ID: 33545860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering a Highly Biomimetic Chitosan-Based Cartilage Scaffold by Using Short Fibers and a Cartilage-Decellularized Matrix.
    Shen Y; Xu Y; Yi B; Wang X; Tang H; Chen C; Zhang Y
    Biomacromolecules; 2021 May; 22(5):2284-2297. PubMed ID: 33913697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A One-Stone-Two-Birds Strategy for Osteochondral Regeneration Based on a 3D Printable Biomimetic Scaffold with Kartogenin Biochemical Stimuli Gradient.
    Wei W; Liu W; Kang H; Zhang X; Yu R; Liu J; Huang K; Zhang Y; Xie M; Hu Y; Dai H
    Adv Healthc Mater; 2023 Jun; 12(15):e2300108. PubMed ID: 36763493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermosensitive hydrogel for cartilage regeneration via synergistic delivery of SDF-1α like polypeptides and kartogenin.
    Yuan X; Wan J; Yang Y; Huang L; Zhou C; Su J; Hua S; Pu H; Zou Y; Zhu H; Jiang X; Xiao J
    Carbohydr Polym; 2023 Mar; 304():120492. PubMed ID: 36641179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiphasic, Multistructured and Hierarchical Strategies for Cartilage Regeneration.
    Correia CR; Reis RL; Mano JF
    Adv Exp Med Biol; 2015; 881():143-60. PubMed ID: 26545749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanofiber Composite Microchannel-Containing Injectable Hydrogels for Cartilage Tissue Regeneration.
    Liu J; Tang C; Huang J; Gu J; Yin J; Xu G; Yan S
    Adv Healthc Mater; 2023 Dec; 12(31):e2302293. PubMed ID: 37689993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dual functional chondro-inductive chitosan thermogel with high shear modulus and sustained drug release for cartilage tissue engineering.
    Dehghan-Baniani D; Mehrjou B; Wang D; Bagheri R; Solouk A; Chu PK; Wu H
    Int J Biol Macromol; 2022 Apr; 205():638-650. PubMed ID: 35217083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microribbon-hydrogel composite scaffold accelerates cartilage regeneration in vivo with enhanced mechanical properties using mixed stem cells and chondrocytes.
    Rogan H; Ilagan F; Tong X; Chu CR; Yang F
    Biomaterials; 2020 Jan; 228():119579. PubMed ID: 31698227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repair of articular cartilage defects in rabbits through tissue-engineered cartilage constructed with chitosan hydrogel and chondrocytes.
    Zhao M; Chen Z; Liu K; Wan YQ; Li XD; Luo XW; Bai YG; Yang ZL; Feng G
    J Zhejiang Univ Sci B; 2015 Nov; 16(11):914-23. PubMed ID: 26537209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A soft 3D polyacrylate hydrogel recapitulates the cartilage niche and allows growth-factor free tissue engineering of human articular cartilage.
    Jiménez G; Venkateswaran S; López-Ruiz E; Perán M; Pernagallo S; Díaz-Monchón JJ; Canadas RF; Antich C; Oliveira JM; Callanan A; Walllace R; Reis RL; Montañez E; Carrillo E; Bradley M; Marchal JA
    Acta Biomater; 2019 May; 90():146-156. PubMed ID: 30910621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.