These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 32803873)

  • 41. Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states.
    Komar AA; Hatzoglou M
    Cell Cycle; 2011 Jan; 10(2):229-40. PubMed ID: 21220943
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Translation of eukaryotic translation initiation factor 4GI (eIF4GI) proceeds from multiple mRNAs containing a novel cap-dependent internal ribosome entry site (IRES) that is active during poliovirus infection.
    Byrd MP; Zamora M; Lloyd RE
    J Biol Chem; 2005 May; 280(19):18610-22. PubMed ID: 15755734
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The interplay between cis- and trans-acting factors drives selective mRNA translation initiation in eukaryotes.
    Tidu A; Martin F
    Biochimie; 2024 Feb; 217():20-30. PubMed ID: 37741547
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Eukaryotic aspects of translation initiation brought into focus.
    Aylett CH; Ban N
    Philos Trans R Soc Lond B Biol Sci; 2017 Mar; 372(1716):. PubMed ID: 28138072
    [TBL] [Abstract][Full Text] [Related]  

  • 45. General and Target-Specific DExD/H RNA Helicases in Eukaryotic Translation Initiation.
    Shen L; Pelletier J
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32575790
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gene regulation by structured mRNA elements.
    Wachter A
    Trends Genet; 2014 May; 30(5):172-81. PubMed ID: 24780087
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Protein synthesis in eukaryotes: the growing biological relevance of cap-independent translation initiation.
    López-Lastra M; Rivas A; Barría MI
    Biol Res; 2005; 38(2-3):121-46. PubMed ID: 16238092
    [TBL] [Abstract][Full Text] [Related]  

  • 48. SubLocEP: a novel ensemble predictor of subcellular localization of eukaryotic mRNA based on machine learning.
    Li J; Zhang L; He S; Guo F; Zou Q
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33388743
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Messenger RNA turnover in eukaryotes: pathways and enzymes.
    Meyer S; Temme C; Wahle E
    Crit Rev Biochem Mol Biol; 2004; 39(4):197-216. PubMed ID: 15596551
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulation of mRNA translation as a conserved mechanism of longevity control.
    Mehta R; Chandler-Brown D; Ramos FJ; Shamieh LS; Kaeberlein M
    Adv Exp Med Biol; 2010; 694():14-29. PubMed ID: 20886753
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanisms of mRNA surveillance in eukaryotes.
    Hilleren P; Parker R
    Annu Rev Genet; 1999; 33():229-60. PubMed ID: 10690409
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanisms and regulation of protein synthesis in mitochondria.
    Kummer E; Ban N
    Nat Rev Mol Cell Biol; 2021 May; 22(5):307-325. PubMed ID: 33594280
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dynamic modules of the coactivator SAGA in eukaryotic transcription.
    Cheon Y; Kim H; Park K; Kim M; Lee D
    Exp Mol Med; 2020 Jul; 52(7):991-1003. PubMed ID: 32616828
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In the Driver's Seat: The Case for Transcriptional Regulation and Coupling as Relevant Determinants of the Circadian Transcriptome and Proteome in Eukaryotes.
    Montenegro-Montero A; Larrondo LF
    J Biol Rhythms; 2016 Feb; 31(1):37-47. PubMed ID: 26446874
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synonymous but Not Silent: The Codon Usage Code for Gene Expression and Protein Folding.
    Liu Y; Yang Q; Zhao F
    Annu Rev Biochem; 2021 Jun; 90():375-401. PubMed ID: 33441035
    [TBL] [Abstract][Full Text] [Related]  

  • 56. mRNA surveillance: the perfect persist.
    Wagner E; Lykke-Andersen J
    J Cell Sci; 2002 Aug; 115(Pt 15):3033-8. PubMed ID: 12118059
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evidence supporting a viral origin of the eukaryotic nucleus.
    Bell PJL
    Virus Res; 2020 Nov; 289():198168. PubMed ID: 32961211
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Two distinct SECIS structures capable of directing selenocysteine incorporation in eukaryotes.
    Grundner-Culemann E; Martin GW; Harney JW; Berry MJ
    RNA; 1999 May; 5(5):625-35. PubMed ID: 10334333
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Sequence-Independent, Unstructured Internal Ribosome Entry Site Is Responsible for Internal Expression of the Coat Protein of Turnip Crinkle Virus.
    May J; Johnson P; Saleem H; Simon AE
    J Virol; 2017 Apr; 91(8):. PubMed ID: 28179526
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The complexity of miRNA-mediated repression.
    Wilczynska A; Bushell M
    Cell Death Differ; 2015 Jan; 22(1):22-33. PubMed ID: 25190144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.