These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 32803951)
1. Elucidating Anionic Redox Chemistry in P3 Layered Cathode for Na-Ion Batteries. Jia M; Li H; Qiao Y; Wang L; Cao X; Cabana J; Zhou H ACS Appl Mater Interfaces; 2020 Aug; 12(34):38249-38255. PubMed ID: 32803951 [TBL] [Abstract][Full Text] [Related]
2. Elucidating the Redox Behavior in Different P-type Layered Oxides for Sodium-Ion Batteries. Chen X; Cheng C; Ding M; Xia Y; Chang LY; Chan TS; Tang H; Zhang N; Zhang L ACS Appl Mater Interfaces; 2020 Sep; 12(39):43665-43673. PubMed ID: 32876426 [TBL] [Abstract][Full Text] [Related]
3. Manganese-Based Na-Rich Materials Boost Anionic Redox in High-Performance Layered Cathodes for Sodium-Ion Batteries. Zhang X; Qiao Y; Guo S; Jiang K; Xu S; Xu H; Wang P; He P; Zhou H Adv Mater; 2019 Jul; 31(27):e1807770. PubMed ID: 31074542 [TBL] [Abstract][Full Text] [Related]
4. Elucidating and Mitigating the Degradation of Cationic-Anionic Redox Processes in Li Zhou K; Zheng S; Liu H; Zhang C; Gao H; Luo M; Xu N; Xiang Y; Liu X; Zhong G; Yang Y ACS Appl Mater Interfaces; 2019 Dec; 11(49):45674-45682. PubMed ID: 31714058 [TBL] [Abstract][Full Text] [Related]
5. New Insights into Anionic Redox in P2-Type Oxide Cathodes for Sodium-Ion Batteries. Huang ZX; Li K; Cao JM; Zhang KY; Liu HH; Guo JZ; Liu Y; Wang T; Dai D; Zhang XY; Geng H; Wu XL Nano Lett; 2024 Oct; 24(43):13615-13623. PubMed ID: 39417609 [TBL] [Abstract][Full Text] [Related]
6. Identifying Anionic Redox Activity within the Related O3- and P2-Type Cathodes for Sodium-Ion Battery. Jia M; Qiao Y; Li X; Qiu F; Cao X; He P; Zhou H ACS Appl Mater Interfaces; 2020 Jan; 12(1):851-857. PubMed ID: 31809015 [TBL] [Abstract][Full Text] [Related]
7. High-Energy Earth-Abundant Cathodes with Enhanced Cationic/Anionic Redox for Sustainable and Long-Lasting Na-Ion Batteries. Zhang X; Zuo W; Liu S; Zhao C; Li Q; Gao Y; Liu X; Xiao D; Hwang I; Ren Y; Sun CJ; Chen Z; Wang B; Feng Y; Yang W; Xu GL; Amine K; Yu H Adv Mater; 2024 Aug; 36(33):e2310659. PubMed ID: 38871360 [TBL] [Abstract][Full Text] [Related]
8. Slow-Released Cationic Redox Activity Promoted Stable Anionic Redox and Suppressed Jahn-Teller Distortion in Layered Sodium Manganese Oxides. Zeng A; Jiao J; Zhang H; Zhao E; He T; Xu Z; Xiao X ACS Appl Mater Interfaces; 2024 Feb; 16(6):7119-7129. PubMed ID: 38295308 [TBL] [Abstract][Full Text] [Related]
9. Sustainable Anionic Redox by Inhibiting Li Cross-Layer Migration in Na-Based Layered Oxide Cathodes. Shi Y; Geng F; Sun Y; Jiang P; Kan WH; Tong W; Lu X; Qian G; Zhang N; Wei B; Hu B; Cao D; Lu X ACS Nano; 2024 Feb; ():. PubMed ID: 38324715 [TBL] [Abstract][Full Text] [Related]
10. Structure design enables stable anionic and cationic redox chemistry in a T2-type Li-excess layered oxide cathode. Cao X; Li H; Qiao Y; Jia M; Kitaura H; Zhang J; He P; Cabana J; Zhou H Sci Bull (Beijing); 2022 Feb; 67(4):381-388. PubMed ID: 36546090 [TBL] [Abstract][Full Text] [Related]
11. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Assat G; Foix D; Delacourt C; Iadecola A; Dedryvère R; Tarascon JM Nat Commun; 2017 Dec; 8(1):2219. PubMed ID: 29263321 [TBL] [Abstract][Full Text] [Related]
12. Restraining Oxygen Loss and Boosting Reversible Oxygen Redox in a P2-Type Oxide Cathode by Trace Anion Substitution. Zhao C; Yang Q; Geng F; Li C; Zhang N; Ma J; Tong W; Hu B ACS Appl Mater Interfaces; 2021 Jan; 13(1):360-369. PubMed ID: 33378178 [TBL] [Abstract][Full Text] [Related]
13. Stabilizing Anionic Redox Chemistry in a Mn-Based Layered Oxide Cathode Constructed by Li-Deficient Pristine State. Cao X; Li H; Qiao Y; Jia M; Li X; Cabana J; Zhou H Adv Mater; 2021 Jan; 33(2):e2004280. PubMed ID: 33270286 [TBL] [Abstract][Full Text] [Related]
14. Quantification of Anionic Redox Chemistry in a Prototype Na-Rich Layered Oxide. Hu Y; Liu T; Cheng C; Yan Y; Ding M; Chan TS; Guo J; Zhang L ACS Appl Mater Interfaces; 2020 Jan; 12(3):3617-3623. PubMed ID: 31885253 [TBL] [Abstract][Full Text] [Related]
15. Stabilizing Transition Metal Vacancy Induced Oxygen Redox by Co Li XL; Bao J; Shadike Z; Wang QC; Yang XQ; Zhou YN; Sun D; Fang F Angew Chem Int Ed Engl; 2021 Sep; 60(40):22026-22034. PubMed ID: 34378281 [TBL] [Abstract][Full Text] [Related]
16. Revealing the Electrochemical Mechanism of Cationic/Anionic Redox on Li-Rich Layered Oxides via Controlling the Distribution of Primary Particle Size. Lu L; Hu Y; Jiang H; Zhu C; Chen J; Li C ACS Appl Mater Interfaces; 2019 Jul; 11(29):25796-25803. PubMed ID: 31124653 [TBL] [Abstract][Full Text] [Related]
17. Adjusting Oxygen Redox Reaction and Structural Stability of Li- and Mn-Rich Cathodes by Zr-Ti Dual-Doping. Feng Z; Song H; Li Y; Lyu Y; Xiao D; Guo B ACS Appl Mater Interfaces; 2022 Feb; 14(4):5308-5317. PubMed ID: 35073038 [TBL] [Abstract][Full Text] [Related]
18. Dual-Function of Cation-Doping to Activate Cationic and Anionic Redox in a Mn-Based Sodium-Layered Oxide Cathode. Ni Q; Zhao Y; Yuan X; Li J; Jin H Small; 2022 Jun; 18(24):e2200289. PubMed ID: 35585688 [TBL] [Abstract][Full Text] [Related]
19. Realizing High-Performance Cathodes with Cationic and Anionic Redox Reactions in High-Sodium-Content P2-Type Oxides for Sodium-Ion Batteries. Liu Q; Zheng W; Liu G; Hu J; Zhang X; Han N; Wang Z; Luo J; Fransaer J; Lu Z ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36757842 [TBL] [Abstract][Full Text] [Related]
20. Exploring the Anionic Redox Chemistry in Cathode Materials for High-Energy-Density Sodium-Ion Batteries. Shoaib M; Thangadurai V ACS Omega; 2022 Oct; 7(39):34710-34717. PubMed ID: 36211051 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]