These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32803966)

  • 1. Comparison of 1,2-Diarylcyclopropanecarboxylates with 1,2,2-Triarylcyclopropanecarboxylates as Chiral Ligands for Dirhodium-Catalyzed Cyclopropanation and C-H Functionalization.
    Wertz B; Ren Z; Bacsa J; Musaev DG; Davies HML
    J Org Chem; 2020 Oct; 85(19):12199-12211. PubMed ID: 32803966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of sterically demanding chiral dirhodium catalysts in site-selective C-H functionalization of activated primary C-H bonds.
    Qin C; Davies HM
    J Am Chem Soc; 2014 Jul; 136(27):9792-6. PubMed ID: 24933043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. D
    Chen Z; Shimabukuro K; Bacsa J; Musaev DG; Davies HML
    J Am Chem Soc; 2024 Jul; 146(28):19460-19473. PubMed ID: 38959398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantioselective Intermolecular C-H Functionalization of Primary Benzylic C-H Bonds Using ((Aryl)(diazo)methyl)phosphonates.
    Naeem Y; Matsuo BT; Davies HML
    ACS Catal; 2024 Jan; 14(1):124-130. PubMed ID: 38205024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dirhodium tetracarboxylates as catalysts for selective intermolecular C-H functionalization.
    Davies HML; Liao K
    Nat Rev Chem; 2019 Jun; 3(6):347-360. PubMed ID: 32995499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of catalysts for site-selective and enantioselective functionalization of non-activated primary C-H bonds.
    Liao K; Yang YF; Li Y; Sanders JN; Houk KN; Musaev DG; Davies HML
    Nat Chem; 2018 Oct; 10(10):1048-1055. PubMed ID: 30082883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, Synthesis, and Evaluation of Extended C4-Symmetric Dirhodium Tetracarboxylate Catalysts.
    Garlets ZJ; Boni YT; Sharland JC; Kirby PR; Fu J; Bacsa J; Davies HML
    ACS Catal; 2022 Sep; 12(17):10841-10848. PubMed ID: 37274599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalyst-Controlled Selective Functionalization of Unactivated C-H Bonds in the Presence of Electronically Activated C-H Bonds.
    Liu W; Ren Z; Bosse AT; Liao K; Goldstein EL; Bacsa J; Musaev DG; Stoltz BM; Davies HML
    J Am Chem Soc; 2018 Sep; 140(38):12247-12255. PubMed ID: 30222321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical study of the mechanism behind the site- and enantio-selectivity of C-H functionalization catalysed by chiral dirhodium catalyst.
    Zhou M; Springborg M
    Phys Chem Chem Phys; 2020 May; 22(17):9561-9572. PubMed ID: 32319983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diruthenium Tetracarboxylate-Catalyzed Enantioselective Cyclopropanation with Aryldiazoacetates.
    Sailer JK; Sharland JC; Bacsa J; Harris CF; Berry JF; Musaev DG; Davies HML
    Organometallics; 2023 Aug; 42(15):2122-2133. PubMed ID: 37592951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-situ Kinetic Studies of Rh(II)-Catalyzed C-H Functionalization to Achieve High Catalyst Turnover Numbers.
    Wei B; Sharland JC; Blackmond DG; Musaev DG; Davies HML
    ACS Catal; 2022 Nov; 12(21):13400-13410. PubMed ID: 37274060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guide to Enantioselective Dirhodium(II)-Catalyzed Cyclopropanation with Aryldiazoacetates.
    Chepiga KM; Qin C; Alford JS; Chennamadhavuni S; Gregg TM; Olson JP; Davies HM
    Tetrahedron; 2013 Jul; 69(27-28):. PubMed ID: 24273349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral Heterobimetallic Bismuth-Rhodium Paddlewheel Catalysts: A Conceptually New Approach to Asymmetric Cyclopropanation.
    Collins LR; Auris S; Goddard R; Fürstner A
    Angew Chem Int Ed Engl; 2019 Mar; 58(11):3557-3561. PubMed ID: 30672077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Chemo- and Stereoselective Catalyst-Controlled Allylic C-H Insertion and Cyclopropanation Using Donor/Donor Carbenes.
    Zhu D; Chen L; Zhang H; Ma Z; Jiang H; Zhu S
    Angew Chem Int Ed Engl; 2018 Sep; 57(38):12405-12409. PubMed ID: 30059187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-selective and stereoselective functionalization of non-activated tertiary C-H bonds.
    Liao K; Pickel TC; Boyarskikh V; Bacsa J; Musaev DG; Davies HML
    Nature; 2017 Nov; 551(7682):609-613. PubMed ID: 29156454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric intermolecular C-H functionalization of benzyl silyl ethers mediated by chiral auxiliary-based aryldiazoacetates and chiral dirhodium catalysts.
    Davies HM; Hedley SJ; Bohall BR
    J Org Chem; 2005 Dec; 70(26):10737-42. PubMed ID: 16355994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhodium-Stabilized Diarylcarbenes Behaving as Donor/Acceptor Carbenes.
    Lee M; Ren Z; Musaev DG; Davies HML
    ACS Catal; 2020 Jun; 10(11):6240-6247. PubMed ID: 37275336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High selectivity from configurational match/mismatch in carbon-hydrogen insertion reactions of steroidal diazoacetates catalyzed by chiral dirhodium(II) carboxamidates.
    Doyle MP; Davies SB; May EJ
    J Org Chem; 2001 Nov; 66(24):8112-9. PubMed ID: 11722213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guiding principles for site selective and stereoselective intermolecular C-H functionalization by donor/acceptor rhodium carbenes.
    Davies HM; Morton D
    Chem Soc Rev; 2011 Apr; 40(4):1857-69. PubMed ID: 21359404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Donor/Acceptor-Substituted Diazo Compounds in Flow and Their Application in Enantioselective Dirhodium-Catalyzed Cyclopropanation and C-H Functionalization.
    Rackl D; Yoo CJ; Jones CW; Davies HML
    Org Lett; 2017 Jun; 19(12):3055-3058. PubMed ID: 28581296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.