BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 32804105)

  • 1. Effects of antioxidant MnTBAP on angiogenesis in newborn mice with hyperoxic lung injury.
    Paturi B; Ryan RM; Nielsen L; Wang H; Kumar VHS
    J Neonatal Perinatal Med; 2021; 14(1):53-60. PubMed ID: 32804105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidant MnTBAP does not protect adult mice from neonatal hyperoxic lung injury.
    Kiskurno S; Ryan RM; Paturi B; Wang H; Kumar VH
    Respir Physiol Neurobiol; 2020 Nov; 282():103545. PubMed ID: 32927098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caffeine is associated with improved alveolarization and angiogenesis in male mice following hyperoxia induced lung injury.
    Dumpa V; Nielsen L; Wang H; Kumar VHS
    BMC Pulm Med; 2019 Jul; 19(1):138. PubMed ID: 31362742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of intermittent hypoxia and hyperoxia on angiogenesis and lung development in newborn mice.
    Elberson VD; Nielsen LC; Wang H; Kumar HS
    J Neonatal Perinatal Med; 2015; 8(4):313-22. PubMed ID: 26836820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of resveratrol on hyperoxia-induced lung injury in neonatal rats.
    Özdemir ÖM; Gözkeser E; Bir F; Yenisey Ç
    Pediatr Neonatol; 2014 Oct; 55(5):352-7. PubMed ID: 24630815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment with Geranylgeranylacetone Induces Heat Shock Protein 70 and Attenuates Neonatal Hyperoxic Lung Injury in a Model of Bronchopulmonary Dysplasia.
    Tokuriki S; Igarashi A; Okuno T; Ohta G; Naiki H; Ohshima Y
    Lung; 2017 Aug; 195(4):469-476. PubMed ID: 28447205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombinant human VEGF treatment enhances alveolarization after hyperoxic lung injury in neonatal rats.
    Kunig AM; Balasubramaniam V; Markham NE; Morgan D; Montgomery G; Grover TR; Abman SH
    Am J Physiol Lung Cell Mol Physiol; 2005 Oct; 289(4):L529-35. PubMed ID: 15908474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superoxide dismutase 3 dysregulation in a murine model of neonatal lung injury.
    Poonyagariyagorn HK; Metzger S; Dikeman D; Mercado AL; Malinina A; Calvi C; McGrath-Morrow S; Neptune ER
    Am J Respir Cell Mol Biol; 2014 Sep; 51(3):380-90. PubMed ID: 24673633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Protective effect of vitamin D against hyperoxia-induced bronchopulmonary dysplasia in newborn mice].
    Chen H; Chen X; Chen J; Zhao H; Wang B; Zheng W; Lü J; Du J
    Nan Fang Yi Ke Da Xue Xue Bao; 2019 Jul; 39(7):816-822. PubMed ID: 31340915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of Gender on Mesenchymal Stem Cell (MSC) Efficacy in Neonatal Hyperoxia-Induced Lung Injury.
    Sammour I; Somashekar S; Huang J; Batlahally S; Breton M; Valasaki K; Khan A; Wu S; Young KC
    PLoS One; 2016; 11(10):e0164269. PubMed ID: 27711256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of EC-SOD overexpression in preserving pulmonary angiogenesis inhibited by oxidative stress.
    Perveen S; Patel H; Arif A; Younis S; Codipilly CN; Ahmed M
    PLoS One; 2012; 7(12):e51945. PubMed ID: 23284826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cathelicidin attenuates hyperoxia-induced lung injury by inhibiting oxidative stress in newborn rats.
    Jiang JS; Chou HC; Chen CM
    Free Radic Biol Med; 2020 Apr; 150():23-29. PubMed ID: 32057991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quercetin attenuates the hyperoxic lung injury in neonatal mice: Implications for Bronchopulmonary dysplasia (BPD).
    Maturu P; Wei-Liang Y; Androutsopoulos VP; Jiang W; Wang L; Tsatsakis AM; Couroucli XI
    Food Chem Toxicol; 2018 Apr; 114():23-33. PubMed ID: 29432836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of intra-amniotic endotoxin priming plus hyperoxic exposure on the expression of vascular endothelial growth factor and its receptors in lungs of preterm newborn rats].
    Wang W; Wei W; Ning Q; Luo XP
    Zhonghua Er Ke Za Zhi; 2007 Jul; 45(7):533-8. PubMed ID: 17953812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Anti-inflammatory effects of erythropoietin on hyperoxia-induced bronchopulmonary dysplasia in newborn rats].
    Wang XL; Xue XD
    Zhonghua Er Ke Za Zhi; 2009 Jun; 47(6):446-51. PubMed ID: 19951473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recombinant CCN1 prevents hyperoxia-induced lung injury in neonatal rats.
    Vaidya R; Zambrano R; Hummler JK; Luo S; Duncan MR; Young K; Lau LF; Wu S
    Pediatr Res; 2017 Nov; 82(5):863-871. PubMed ID: 28700567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustained hyperoxia-induced NF-κB activation improves survival and preserves lung development in neonatal mice.
    McKenna S; Michaelis KA; Agboke F; Liu T; Han K; Yang G; Dennery PA; Wright CJ
    Am J Physiol Lung Cell Mol Physiol; 2014 Jun; 306(12):L1078-89. PubMed ID: 24748603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of FABP4 attenuates hyperoxia-induced lung injury and fibrosis via inhibiting TGF-β signaling in neonatal rats.
    Huang LT; Chou HC; Chen CM
    J Cell Physiol; 2022 Feb; 237(2):1509-1520. PubMed ID: 34708870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Irisin alleviates hyperoxia-induced bronchopulmonary dysplasia through activation of Nrf2/HO-1 pathway.
    Zhao ZW; Lin XX; Guo YZ; He X; Zhang XT; Huang Y
    Peptides; 2023 Dec; 170():171109. PubMed ID: 37804931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upregulating carnitine palmitoyltransferase 1 attenuates hyperoxia-induced endothelial cell dysfunction and persistent lung injury.
    Chang JL; Gong J; Rizal S; Peterson AL; Chang J; Yao C; Dennery PA; Yao H
    Respir Res; 2022 Aug; 23(1):205. PubMed ID: 35964084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.