BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32804172)

  • 1. Real-Time Monitoring of Aurora kinase A Activation using Conformational FRET Biosensors in Live Cells.
    Bertolin G; Le Marchand G; Tramier M
    J Vis Exp; 2020 Jul; (161):. PubMed ID: 32804172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized FRET Pairs and Quantification Approaches To Detect the Activation of Aurora Kinase A at Mitosis.
    Bertolin G; Sizaire F; Déméautis C; Chapuis C; Mérola F; Erard M; Tramier M
    ACS Sens; 2019 Aug; 4(8):2018-2027. PubMed ID: 31317736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated screening of AURKA activity based on a genetically encoded FRET biosensor using fluorescence lifetime imaging microscopy.
    Sizaire F; Le Marchand G; Pécréaux J; Bouchareb O; Tramier M
    Methods Appl Fluoresc; 2020 Feb; 8(2):024006. PubMed ID: 32032967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A FRET biosensor reveals spatiotemporal activation and functions of aurora kinase A in living cells.
    Bertolin G; Sizaire F; Herbomel G; Reboutier D; Prigent C; Tramier M
    Nat Commun; 2016 Sep; 7():12674. PubMed ID: 27624869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The LC3B FRET biosensor monitors the modes of action of ATG4B during autophagy in living cells.
    Gökerküçük EB; Cheron A; Tramier M; Bertolin G
    Autophagy; 2023 Aug; 19(8):2275-2295. PubMed ID: 36814061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FRET microscopy for real-time monitoring of signaling events in live cells using unimolecular biosensors.
    Sprenger JU; Perera RK; Götz KR; Nikolaev VO
    J Vis Exp; 2012 Aug; (66):e4081. PubMed ID: 22929080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the non-mitotic functions of Aurora kinase A: more than just cell division.
    Bertolin G; Tramier M
    Cell Mol Life Sci; 2020 Mar; 77(6):1031-1047. PubMed ID: 31562563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo Quantification of Intramolecular FRET Using RacFRET Biosensors.
    Bosch M; Kardash E
    Methods Mol Biol; 2019; 2040():275-297. PubMed ID: 31432484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Guide to Fluorescence Lifetime Microscopy and Förster's Resonance Energy Transfer in Neuroscience.
    Liput DJ; Nguyen TA; Augustin SM; Lee JO; Vogel SS
    Curr Protoc Neurosci; 2020 Dec; 94(1):e108. PubMed ID: 33232577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence resonance energy transfer (FRET)-based biosensors: visualizing cellular dynamics and bioenergetics.
    Zadran S; Standley S; Wong K; Otiniano E; Amighi A; Baudry M
    Appl Microbiol Biotechnol; 2012 Nov; 96(4):895-902. PubMed ID: 23053099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization of kinase activity with FRET-based activity biosensors.
    Depry C; Zhang J
    Curr Protoc Mol Biol; 2010 Jul; Chapter 18():Unit 18.15. PubMed ID: 20583095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetically encoded FRET-based biosensors for multiparameter fluorescence imaging.
    Carlson HJ; Campbell RE
    Curr Opin Biotechnol; 2009 Feb; 20(1):19-27. PubMed ID: 19223167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetically Encoded FRET-Based Tension Sensors.
    Cost AL; Khalaji S; Grashoff C
    Curr Protoc Cell Biol; 2019 Jun; 83(1):e85. PubMed ID: 30865383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Genetically Encoded FRET Biosensors for Rho-Family GTPases.
    Donnelly SK; Miskolci V; Garrastegui AM; Cox D; Hodgson L
    Methods Mol Biol; 2018; 1821():87-106. PubMed ID: 30062407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A practical method for monitoring FRET-based biosensors in living animals using two-photon microscopy.
    Tao W; Rubart M; Ryan J; Xiao X; Qiao C; Hato T; Davidson MW; Dunn KW; Day RN
    Am J Physiol Cell Physiol; 2015 Dec; 309(11):C724-35. PubMed ID: 26333599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A versatile toolkit to produce sensitive FRET biosensors to visualize signaling in time and space.
    Fritz RD; Letzelter M; Reimann A; Martin K; Fusco L; Ritsma L; Ponsioen B; Fluri E; Schulte-Merker S; van Rheenen J; Pertz O
    Sci Signal; 2013 Jul; 6(285):rs12. PubMed ID: 23882122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of FRET biosensors for mammalian and plant systems.
    Hamers D; van Voorst Vader L; Borst JW; Goedhart J
    Protoplasma; 2014 Mar; 251(2):333-47. PubMed ID: 24337770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging of Metabolic Status in 3D Cultures with an Improved AMPK FRET Biosensor for FLIM.
    Chennell G; Willows RJ; Warren SC; Carling D; French PM; Dunsby C; Sardini A
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27548185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics.
    Li IT; Pham E; Truong K
    Biotechnol Lett; 2006 Dec; 28(24):1971-82. PubMed ID: 17021660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studying Kinetochores In Vivo Using FLIM-FRET.
    Yoo TY; Needleman DJ
    Methods Mol Biol; 2016; 1413():169-86. PubMed ID: 27193849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.