BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 32804468)

  • 21. Proton Conductivity Enhancement at High Temperature on Polybenzimidazole Membrane Electrolyte with Acid-Functionalized Graphene Oxide Fillers.
    Sulaiman RRR; Walvekar R; Wong WY; Khalid M; Pang MM
    Membranes (Basel); 2022 Mar; 12(3):. PubMed ID: 35323819
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Deep Insight into Different Acidic Additives as Doping Agents for Enhancing Proton Conductivity on Polybenzimidazole Membranes.
    Escorihuela J; García-Bernabé A; Compañ V
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32570990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Construction of Successive Proton Conduction Channels to Accelerate the Proton Conduction Process in Flexible Proton Exchange Membranes.
    Li Q; Song D; Gao W; Wu D; Zhang N; Gao X; Che Q
    ACS Appl Mater Interfaces; 2024 Mar; 16(10):12686-12696. PubMed ID: 38422459
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proton Conductivity of Proton Exchange Membrane Synergistically Promoted by Different Functionalized Metal-Organic Frameworks.
    Rao Z; Tang B; Wu P
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22597-22603. PubMed ID: 28621516
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancing Performance and Stability of High-Temperature Proton Exchange Membranes through Multiwalled Carbon Nanotube Incorporation into Self-Cross-Linked Fluorenone-Containing Polybenzimidazole.
    Huang J; Wei G; Wu A; Liu D; Wang L; Luo J
    ACS Appl Mater Interfaces; 2024 May; 16(20):25994-26003. PubMed ID: 38739746
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ionic Liquid Composite Polybenzimidazol Membranes for High Temperature PEMFC Applications.
    Escorihuela J; García-Bernabé A; Montero Á; Sahuquillo Ó; Giménez E; Compañ V
    Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 31013669
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual-Proton Conductor for Fuel Cells with Flexible Operational Temperature.
    Li W; Liu W; Jia W; Zhang J; Zhang Q; Zhang Z; Zhang J; Li Y; Liu Y; Wang H; Xiang Y; Lu S
    Adv Mater; 2024 Apr; 36(14):e2310584. PubMed ID: 38160326
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phase Inversion-Induced Porous Polybenzimidazole Fuel Cell Membranes: An Efficient Architecture for High-Temperature Water-Free Proton Transport.
    Lee S; Nam KH; Seo K; Kim G; Han H
    Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32707660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High Proton Conductivity of the UiO-66-NH
    Xing YY; Wang J; Zhang CX; Wang QL
    ACS Appl Mater Interfaces; 2023 Jul; 15(27):33003-33012. PubMed ID: 37368410
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanocomposite membranes based on polybenzimidazole and ZrO2 for high-temperature proton exchange membrane fuel cells.
    Nawn G; Pace G; Lavina S; Vezzù K; Negro E; Bertasi F; Polizzi S; Di Noto V
    ChemSusChem; 2015 Apr; 8(8):1381-93. PubMed ID: 25801848
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Covalently cross-linked sulfone polybenzimidazole membranes with poly(vinylbenzyl chloride) for fuel cell applications.
    Yang J; Aili D; Li Q; Cleemann LN; Jensen JO; Bjerrum NJ; He R
    ChemSusChem; 2013 Feb; 6(2):275-82. PubMed ID: 23303655
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anhydrous proton conductivity of electrospun phosphoric acid-doped PVP-PVDF nanofibers and composite membranes containing MOF fillers.
    Sun L; Gu Q; Wang H; Yu J; Zhou X
    RSC Adv; 2021 Sep; 11(47):29527-29536. PubMed ID: 35479537
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sulfonated Cobalt Metal-Organic Framework Embedded Mixed Matrix Membrane towards Fuel-Cell Applications.
    Moorthy S; Deivanayagam P
    ACS Appl Mater Interfaces; 2024 Mar; 16(12):14712-14721. PubMed ID: 38483179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel composite Zr/PBI-O-PhT membranes for HT-PEFC applications.
    Kondratenko MS; Ponomarev II; Gallyamov MO; Razorenov DY; Volkova YA; Kharitonova EP; Khokhlov AR
    Beilstein J Nanotechnol; 2013; 4():481-92. PubMed ID: 24062974
    [TBL] [Abstract][Full Text] [Related]  

  • 35. UiO-66 derivatives and their composite membranes for effective proton conduction.
    Feng L; Hou HB; Zhou H
    Dalton Trans; 2020 Dec; 49(47):17130-17139. PubMed ID: 33179664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Composite Proton Exchange Membranes Based on Chitosan and Phosphotungstic Acid Immobilized One-Dimensional Attapulgite for Direct Methanol Fuel Cells.
    Tsen WC
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32825738
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proton Transport in Aluminum-Substituted Mesoporous Silica Channel-Embedded High-Temperature Anhydrous Proton-Exchange Membrane Fuel Cells.
    Seo K; Nam KH; Han H
    Sci Rep; 2020 Jun; 10(1):10352. PubMed ID: 32587342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dimethylimidazolium-Functionalized Polybenzimidazole and Its Organic-Inorganic Hybrid Membranes for Anion Exchange Membrane Fuel Cells.
    Jheng LC; Cheng CW; Ho KS; Hsu SL; Hsu CY; Lin BY; Ho TH
    Polymers (Basel); 2021 Aug; 13(17):. PubMed ID: 34502904
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced Proton Conductivity of Sulfonated Hybrid Poly(arylene ether ketone) Membranes by Incorporating an Amino-Sulfo Bifunctionalized Metal-Organic Framework for Direct Methanol Fuel Cells.
    Ru C; Li Z; Zhao C; Duan Y; Zhuang Z; Bu F; Na H
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):7963-7973. PubMed ID: 29439561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Constructing anhydrous proton exchange membranes based on cadmium telluride nanocrystal-doped sulfonated poly(ether ether ketone)/polyurethane composites.
    Jin J; Zhao J; Shen S; Yu J; Cheng S; Pan B; Che Q
    Nanotechnology; 2020 May; 31(20):205707. PubMed ID: 32000158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.