BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 32804468)

  • 41. Self-Phosphorylated Polybenzimidazole: An Environmentally Friendly and Economical Approach for Hydrogen/Air High-Temperature Polymer-Electrolyte Membrane Fuel Cells.
    Ponomarev II; Razorenov DY; Skupov KM; Ponomarev II; Volkova YA; Lyssenko KA; Lysova AA; Vtyurina ES; Buzin MI; Klemenkova ZS
    Membranes (Basel); 2023 May; 13(6):. PubMed ID: 37367756
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanocomposite membranes of polybenzimidazole and amine-functionalized carbon nanofibers for high temperature proton exchange membrane fuel cells.
    Jheng LC; Rosidah AA; Hsu SL; Ho KS; Pan CJ; Cheng CW
    RSC Adv; 2021 Mar; 11(17):9964-9976. PubMed ID: 35423528
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A DNA-Threaded ZIF-8 Membrane with High Proton Conductivity and Low Methanol Permeability.
    Guo Y; Jiang Z; Ying W; Chen L; Liu Y; Wang X; Jiang ZJ; Chen B; Peng X
    Adv Mater; 2018 Jan; 30(2):. PubMed ID: 29193330
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Impact of N-Substituent and p
    Jang J; Kim DH; Kang B; Lee JH; Pak C; Lee JS
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):531-540. PubMed ID: 33390000
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Strategically improving the intrinsic proton conductivity of UiO-66-NH
    Feng L; Lan J; Chen F; Hou H; Zhou H
    Dalton Trans; 2021 May; 50(17):5943-5950. PubMed ID: 33949516
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nafion/Surface Modified Ceria Hybrid Membranes for Fuel Cell Application.
    Yurova PA; Malakhova VR; Gerasimova EV; Stenina IA; Yaroslavtsev AB
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372117
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A microfluidic approach to synthesizing high-performance microfibers with tunable anhydrous proton conductivity.
    Hasani-Sadrabadi MM; VanDersarl JJ; Dashtimoghadam E; Bahlakeh G; Majedi FS; Mokarram N; Bertsch A; Jacob KI; Renaud P
    Lab Chip; 2013 Dec; 13(23):4549-53. PubMed ID: 24113644
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultrahigh Proton Conductivities of Postmodified Hf(IV) Metal-Organic Frameworks and Related Chitosan-Based Composite Membranes.
    Chen X; Zhang SL; Xiao SH; Li ZF; Li G
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):35128-35139. PubMed ID: 37462149
    [TBL] [Abstract][Full Text] [Related]  

  • 49. UIO-66-NH
    Zheng L; Dong Y; Chi B; Cui Z; Deng Y; Shi X; Du L; Liao S
    Small; 2019 Jan; 15(4):e1803520. PubMed ID: 30561824
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Considerations of the Effects of Naphthalene Moieties on the Design of Proton-Conductive Poly(arylene ether ketone) Membranes for Direct Methanol Fuel Cells.
    Wang B; Hong L; Li Y; Zhao L; Wei Y; Zhao C; Na H
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):24079-88. PubMed ID: 27557058
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Double cross-linked 3D layered PBI proton exchange membranes for stable fuel cell performance above 200 °C.
    Zhang L; Liu M; Zhu D; Tang M; Zhu T; Gao C; Huang F; Xue L
    Nat Commun; 2024 Apr; 15(1):3409. PubMed ID: 38649702
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Proton Conduction of Nafion Hybrid Membranes Promoted by NH
    Wang H; Zhao Y; Shao Z; Xu W; Wu Q; Ding X; Hou H
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7485-7497. PubMed ID: 33543925
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Various hydrophilic carbon dots doped high temperature proton exchange composite membranes based on polyvinylpyrrolidone and polyethersulfone.
    Dai Y; Wang J; Tao P; He R
    J Colloid Interface Sci; 2019 Oct; 553():503-511. PubMed ID: 31229869
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Comparative Study of CCM and CCS Membrane Electrode Assemblies for High-Temperature Proton Exchange Membrane Fuel Cells with a CsH
    Li Y; Fu Z; Li Y; Zhang G
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297059
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells.
    Fei M; Lin R; Deng Y; Xian H; Bian R; Zhang X; Cheng J; Xu C; Cai D
    Nanotechnology; 2018 Jan; 29(3):035403. PubMed ID: 29135464
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Composite proton exchange membrane for fuel cells based on chitosan modified by acid-base amphoteric nanoparticles.
    Fan X; Ou Y; Yang H; Yang H; Qu T; Zhang Q; Cheng F; Hu F; Liu H; Xu Z; Gong C
    Int J Biol Macromol; 2024 Jan; 254(Pt 3):127796. PubMed ID: 37923030
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-temperature proton-exchange-membrane fuel cells using an ether-containing polybenzimidazole membrane as electrolyte.
    Li J; Li X; Zhao Y; Lu W; Shao Z; Yi B
    ChemSusChem; 2012 May; 5(5):896-900. PubMed ID: 22529063
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Construction of Highly Conductive Cross-Linked Polybenzimidazole-Based Networks for High-Temperature Proton Exchange Membrane Fuel Cells.
    Li T; Yang J; Chen Q; Zhang H; Wang P; Hu W; Liu B
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903047
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Why do proton conducting polybenzimidazole phosphoric acid membranes perform well in high-temperature PEM fuel cells?
    Melchior JP; Majer G; Kreuer KD
    Phys Chem Chem Phys; 2016 Dec; 19(1):601-612. PubMed ID: 27918027
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Proton exchange membrane developed from novel blends of polybenzimidazole and poly(vinyl-1,2,4-triazole).
    Hazarika M; Jana T
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5256-65. PubMed ID: 22953698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.