These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32804653)

  • 1. Enhanced Performance of a Brain Switch by Simultaneous Use of EEG and NIRS Data for Asynchronous Brain-Computer Interface.
    Han CH; Muller KR; Hwang HJ
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2102-2112. PubMed ID: 32804653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of Information Transfer Rates Using a Hybrid EEG-NIRS Brain-Computer Interface with a Short Trial Length: Offline and Pseudo-Online Analyses.
    Shin J; Kim DW; Müller KR; Hwang HJ
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29874804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery.
    Koo B; Lee HG; Nam Y; Kang H; Koh CS; Shin HC; Choi S
    J Neurosci Methods; 2015 Apr; 244():26-32. PubMed ID: 24797225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a Brain-Computer Interface Toggle Switch with Low False-Positive Rate Using Respiration-Modulated Photoplethysmography.
    Han CH; Kim E; Im CH
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance Prediction for a Near-Infrared Spectroscopy-Brain-Computer Interface Using Resting-State Functional Connectivity of the Prefrontal Cortex.
    Shin J; Im CH
    Int J Neural Syst; 2018 Dec; 28(10):1850023. PubMed ID: 29914312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Ternary Hybrid EEG-NIRS Brain-Computer Interface for the Classification of Brain Activation Patterns during Mental Arithmetic, Motor Imagery, and Idle State.
    Shin J; Kwon J; Im CH
    Front Neuroinform; 2018; 12():5. PubMed ID: 29527160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced performance by a hybrid NIRS-EEG brain computer interface.
    Fazli S; Mehnert J; Steinbrink J; Curio G; Villringer A; Müller KR; Blankertz B
    Neuroimage; 2012 Jan; 59(1):519-29. PubMed ID: 21840399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eyes-closed hybrid brain-computer interface employing frontal brain activation.
    Shin J; Müller KR; Hwang HJ
    PLoS One; 2018; 13(5):e0196359. PubMed ID: 29734383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and testing an online near-infrared spectroscopy brain-computer interface tailored to an individual with severe congenital motor impairments.
    Schudlo LC; Chau T
    Disabil Rehabil Assist Technol; 2018 Aug; 13(6):581-591. PubMed ID: 28758809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mental Task Evaluation for Hybrid NIRS-EEG Brain-Computer Interfaces.
    Banville H; Gupta R; Falk TH
    Comput Intell Neurosci; 2017; 2017():3524208. PubMed ID: 29181021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding spatial attention by using cortical currents estimated from electroencephalography with near-infrared spectroscopy prior information.
    Morioka H; Kanemura A; Morimoto S; Yoshioka T; Oba S; Kawanabe M; Ishii S
    Neuroimage; 2014 Apr; 90():128-39. PubMed ID: 24374077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bimodal BCI using simultaneously NIRS and EEG.
    Tomita Y; Vialatte FB; Dreyfus G; Mitsukura Y; Bakardjian H; Cichocki A
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):1274-84. PubMed ID: 24658251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Wearable Asynchronous Brain-Computer Interface Based on EEG-EOG Signals With Fewer Channels.
    Hu L; Zhu J; Chen S; Zhou Y; Song Z; Li Y
    IEEE Trans Biomed Eng; 2024 Feb; 71(2):504-513. PubMed ID: 37616137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why build an integrated EEG-NIRS? About the advantages of hybrid bio-acquisition hardware.
    von Luhmann A; Muller KR
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4475-4478. PubMed ID: 29060891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using NIRS as a predictor for EEG-based BCI performance.
    Fazli S; Mehnert J; Steinbrink J; Blankertz B
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4911-4. PubMed ID: 23367029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG-fTCD hybrid brain-computer interface using template matching and wavelet decomposition.
    Khalaf A; Sejdic E; Akcakaya M
    J Neural Eng; 2019 Jun; 16(3):036014. PubMed ID: 30818297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a Compact Hybrid Brain-Computer Interface System.
    Shin J; Müller KR; Schmitz CH; Kim DW; Hwang HJ
    Biomed Res Int; 2017; 2017():6820482. PubMed ID: 28373984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward a compact hybrid brain-computer interface (BCI): Performance evaluation of multi-class hybrid EEG-fNIRS BCIs with limited number of channels.
    Kwon J; Shin J; Im CH
    PLoS One; 2020; 15(3):e0230491. PubMed ID: 32187208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Common spatial pattern and wavelet decomposition for motor imagery EEG- fTCD brain-computer interface.
    Khalaf A; Sejdic E; Akcakaya M
    J Neurosci Methods; 2019 May; 320():98-106. PubMed ID: 30946880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Fast Brain Switch Based on Multi-Class Code-Modulated VEPs
    Zheng L; Wang Y; Pei W; Chen H
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3058-3061. PubMed ID: 31946533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.