These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 32804955)
41. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea. Li L; Xue C; Bruno K; Nishimura M; Xu JR Mol Plant Microbe Interact; 2004 May; 17(5):547-56. PubMed ID: 15141959 [TBL] [Abstract][Full Text] [Related]
42. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. Islam MT; Croll D; Gladieux P; Soanes DM; Persoons A; Bhattacharjee P; Hossain MS; Gupta DR; Rahman MM; Mahboob MG; Cook N; Salam MU; Surovy MZ; Sancho VB; Maciel JL; NhaniJúnior A; Castroagudín VL; Reges JT; Ceresini PC; Ravel S; Kellner R; Fournier E; Tharreau D; Lebrun MH; McDonald BA; Stitt T; Swan D; Talbot NJ; Saunders DG; Win J; Kamoun S BMC Biol; 2016 Oct; 14(1):84. PubMed ID: 27716181 [TBL] [Abstract][Full Text] [Related]
43. Role of the MoYAK1 protein kinase gene in Magnaporthe oryzae development and pathogenicity. Han JH; Lee HM; Shin JH; Lee YH; Kim KS Environ Microbiol; 2015 Nov; 17(11):4672-89. PubMed ID: 26248223 [TBL] [Abstract][Full Text] [Related]
44. Role of MoAND1-mediated nuclear positioning in morphogenesis and pathogenicity in the rice blast fungus, Magnaporthe oryzae. Jeon J; Rho H; Kim S; Kim KS; Lee YH Fungal Genet Biol; 2014 Aug; 69():43-51. PubMed ID: 24875422 [TBL] [Abstract][Full Text] [Related]
45. Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae. Muzaffar S; Bose C; Banerji A; Nair BG; Chattoo BB Appl Microbiol Biotechnol; 2016 Jan; 100(1):323-35. PubMed ID: 26381667 [TBL] [Abstract][Full Text] [Related]
46. Role of seed infection for the near and far distance dissemination of wheat blast caused by Surovy MZ; Islam T; von Tiedemann A Front Microbiol; 2023; 14():1040605. PubMed ID: 36819053 [No Abstract] [Full Text] [Related]
47. Specific Detection of the Wheat Blast Pathogen (Magnaporthe oryzae Triticum) by Loop-Mediated Isothermal Amplification. Yasuhara-Bell J; Pedley KF; Farman M; Valent B; Stack JP Plant Dis; 2018 Dec; 102(12):2550-2559. PubMed ID: 30320534 [TBL] [Abstract][Full Text] [Related]
48. Orotate phosphoribosyl transferase MoPyr5 is involved in uridine 5'-phosphate synthesis and pathogenesis of Magnaporthe oryzae. Qi Z; Liu M; Dong Y; Yang J; Zhang H; Zheng X; Zhang Z Appl Microbiol Biotechnol; 2016 Apr; 100(8):3655-66. PubMed ID: 26810198 [TBL] [Abstract][Full Text] [Related]
49. Effects of fungicides on in vitro spore germination and mycelial growth of the phytopathogens Leptosphaeria maculans and L. biglobosa (phoma stem canker of oilseed rape). Eckert MR; Rossall S; Selley A; Fitt BD Pest Manag Sci; 2010 Apr; 66(4):396-405. PubMed ID: 20013877 [TBL] [Abstract][Full Text] [Related]
50. Higher fitness and competitive advantage of Pyricularia oryzae Triticum lineage resistant to QoI fungicides. Dorigan AF; Moreira SI; Ceresini PC; Pozza EA; Belan LL; da Silveira PR; Alves E Pest Manag Sci; 2022 Dec; 78(12):5251-5258. PubMed ID: 36054071 [TBL] [Abstract][Full Text] [Related]
51. The D-lactate dehydrogenase MoDLD1 is essential for growth and infection-related development in Magnaporthe oryzae. Zhou T; Qin L; Zhu X; Shen W; Zou J; Wang Z; Wei Y Environ Microbiol; 2017 Oct; 19(10):3938-3958. PubMed ID: 28654182 [TBL] [Abstract][Full Text] [Related]
52. Biological and biorational management of blast diseases in cereals caused by Chakraborty M; Mahmud NU; Ullah C; Rahman M; Islam T Crit Rev Biotechnol; 2021 Nov; 41(7):994-1022. PubMed ID: 34006149 [TBL] [Abstract][Full Text] [Related]
53. MoMon1 is required for vacuolar assembly, conidiogenesis and pathogenicity in the rice blast fungus Magnaporthe oryzae. Gao HM; Liu XG; Shi HB; Lu JP; Yang J; Lin FC; Liu XH Res Microbiol; 2013 May; 164(4):300-9. PubMed ID: 23376292 [TBL] [Abstract][Full Text] [Related]
54. Variable climate suitability for wheat blast (Magnaporthe oryzae pathotype Triticum) in Asia: results from a continental-scale modeling approach. Montes C; Hussain SG; Krupnik TJ Int J Biometeorol; 2022 Nov; 66(11):2237-2249. PubMed ID: 35994122 [TBL] [Abstract][Full Text] [Related]
55. Antifungal Activity of Nanochitin Whisker against Crown Rot Diseases of Wheat. Liang R; Li X; Yuan W; Jin S; Hou S; Wang M; Wang H J Agric Food Chem; 2018 Sep; 66(38):9907-9913. PubMed ID: 30111104 [TBL] [Abstract][Full Text] [Related]
56. Synergistic deletion of RGS1 and COS1 may reduce the pathogenicity of Magnaporthe oryzae. Na H; Bang A; Qing-Biao X; Xia Y; Hui-Min F; Hong-Li L; Chao-Zu H Arch Microbiol; 2019 Aug; 201(6):807-816. PubMed ID: 30874825 [TBL] [Abstract][Full Text] [Related]
57. Rise of a Cereal Killer: The Biology of Magnaporthe oryzae Biotrophic Growth. Fernandez J; Orth K Trends Microbiol; 2018 Jul; 26(7):582-597. PubMed ID: 29395728 [TBL] [Abstract][Full Text] [Related]
58. MoGrr1, a novel F-box protein, is involved in conidiogenesis and cell wall integrity and is critical for the full virulence of Magnaporthe oryzae. Guo M; Gao F; Zhu X; Nie X; Pan Y; Gao Z Appl Microbiol Biotechnol; 2015 Oct; 99(19):8075-88. PubMed ID: 26227409 [TBL] [Abstract][Full Text] [Related]
59. Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat. Qi PF; Johnston A; Balcerzak M; Rocheleau H; Harris LJ; Long XY; Wei YM; Zheng YL; Ouellet T Fungal Biol; 2012 Mar; 116(3):413-26. PubMed ID: 22385623 [TBL] [Abstract][Full Text] [Related]
60. Disruption of putative short-chain acyl-CoA dehydrogenases compromised free radical scavenging, conidiogenesis, and pathogenesis of Magnaporthe oryzae. Aliyu SR; Lin L; Chen X; Abdul W; Lin Y; Otieno FJ; Shabbir A; Batool W; Zhang Y; Tang W; Wang Z; Norvienyeku J Fungal Genet Biol; 2019 Jun; 127():23-34. PubMed ID: 30822500 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]