These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 32805108)

  • 21. Advancing Drug Discovery through Enhanced Free Energy Calculations.
    Abel R; Wang L; Harder ED; Berne BJ; Friesner RA
    Acc Chem Res; 2017 Jul; 50(7):1625-1632. PubMed ID: 28677954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How Well Does the Extended Linear Interaction Energy Method Perform in Accurate Binding Free Energy Calculations?
    Hao D; He X; Ji B; Zhang S; Wang J
    J Chem Inf Model; 2020 Dec; 60(12):6624-6633. PubMed ID: 33213150
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Toolkit for the Analysis of Free-Energy Perturbation Calculations.
    Liu P; Dehez F; Cai W; Chipot C
    J Chem Theory Comput; 2012 Aug; 8(8):2606-16. PubMed ID: 26592106
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Free Energy Perturbation Hamiltonian Replica-Exchange Molecular Dynamics (FEP/H-REMD) for Absolute Ligand Binding Free Energy Calculations.
    Jiang W; Roux B
    J Chem Theory Comput; 2010 Jul; 6(9):2559-2565. PubMed ID: 21857813
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GPU Acceleration of Large-Scale Full-Frequency GW Calculations.
    Yu VW; Govoni M
    J Chem Theory Comput; 2022 Aug; 18(8):4690-4707. PubMed ID: 35913080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GPU based Position Based Dynamics for Surgical Simulators.
    Demirel D; Smith J; Kockara S; Halic T
    HCI Games I (2023); 2023 Jul; 14046():81-88. PubMed ID: 37961068
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SU-E-T-493: Accelerated Monte Carlo Methods for Photon Dosimetry Using a Dual-GPU System and CUDA.
    Liu T; Ding A; Xu X
    Med Phys; 2012 Jun; 39(6Part17):3818. PubMed ID: 28517481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphics Processing Unit Acceleration and Parallelization of GENESIS for Large-Scale Molecular Dynamics Simulations.
    Jung J; Naurse A; Kobayashi C; Sugita Y
    J Chem Theory Comput; 2016 Oct; 12(10):4947-4958. PubMed ID: 27631425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ddcMD: A fully GPU-accelerated molecular dynamics program for the Martini force field.
    Zhang X; Sundram S; Oppelstrup T; Kokkila-Schumacher SIL; Carpenter TS; Ingólfsson HI; Streitz FH; Lightstone FC; Glosli JN
    J Chem Phys; 2020 Jul; 153(4):045103. PubMed ID: 32752727
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heterogeneous CPU+GPU-Enabled Simulations for DFTB Molecular Dynamics of Large Chemical and Biological Systems.
    Allec SI; Sun Y; Sun J; Chang CA; Wong BM
    J Chem Theory Comput; 2019 May; 15(5):2807-2815. PubMed ID: 30916958
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computing Alchemical Free Energy Differences with Hamiltonian Replica Exchange Molecular Dynamics (H-REMD) Simulations.
    Meng Y; Dashti DS; Roitberg AE
    J Chem Theory Comput; 2011 Sep; 7(9):2721-2727. PubMed ID: 22125475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Semiempirical Quantum Chemical Calculations Accelerated on a Hybrid Multicore CPU-GPU Computing Platform.
    Wu X; Koslowski A; Thiel W
    J Chem Theory Comput; 2012 Jul; 8(7):2272-81. PubMed ID: 26588960
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Best bang for your buck: GPU nodes for GROMACS biomolecular simulations.
    Kutzner C; Páll S; Fechner M; Esztermann A; de Groot BL; Grubmüller H
    J Comput Chem; 2015 Oct; 36(26):1990-2008. PubMed ID: 26238484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Faster Self-Consistent Field (SCF) Calculations on GPU Clusters.
    Barca GMJ; Alkan M; Galvez-Vallejo JL; Poole DL; Rendell AP; Gordon MS
    J Chem Theory Comput; 2021 Dec; 17(12):7486-7503. PubMed ID: 34780186
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Algorithms of GPU-enabled reactive force field (ReaxFF) molecular dynamics.
    Zheng M; Li X; Guo L
    J Mol Graph Model; 2013 Apr; 41():1-11. PubMed ID: 23454611
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A GPU solvent-solvent interaction calculation accelerator for biomolecular simulations using the GROMOS software.
    Schmid N; Bötschi M; van Gunsteren WF
    J Comput Chem; 2010 Jun; 31(8):1636-43. PubMed ID: 20127715
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient methods for implementation of multi-level nonrigid mass-preserving image registration on GPUs and multi-threaded CPUs.
    Ellingwood ND; Yin Y; Smith M; Lin CL
    Comput Methods Programs Biomed; 2016 Apr; 127():290-300. PubMed ID: 26776541
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CPU-GPU hybrid accelerating the Zuker algorithm for RNA secondary structure prediction applications.
    Lei G; Dou Y; Wan W; Xia F; Li R; Ma M; Zou D
    BMC Genomics; 2012; 13 Suppl 1(Suppl 1):S14. PubMed ID: 22369626
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GPU accelerated implementation of NCI calculations using promolecular density.
    Rubez G; Etancelin JM; Vigouroux X; Krajecki M; Boisson JC; Hénon E
    J Comput Chem; 2017 May; 38(14):1071-1083. PubMed ID: 28342203
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Generalized Scalable Multiple Copy Algorithms for Molecular Dynamics Simulations in NAMD.
    Jiang W; Phillips JC; Huang L; Fajer M; Meng Y; Gumbart JC; Luo Y; Schulten K; Roux B
    Comput Phys Commun; 2014 Mar; 185(3):908-916. PubMed ID: 24944348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.