These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32805316)

  • 1. A comparison of the Avisoft (v.5.2) and MATLAB Mouse Song Analyzer (v.1.3) vocalization analysis systems in C57BL/6, Fmr1-FVB.129, NS-Pten-FVB, and 129 mice.
    Binder M; Nolan SO; Lugo JN
    J Neurosci Methods; 2020 Dec; 346():108913. PubMed ID: 32805316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the DeepSqueak and Mouse Song Analyzer vocalization analysis systems in C57BL/6J, FVB.129, and FVB neonates.
    Binder MS; Pranske ZJ; Lugo JN
    J Neurosci Methods; 2021 Dec; 364():109356. PubMed ID: 34508783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of the Avisoft (5.2) and Ultravox (2.0) recording systems: Implications for early-life communication and vocalization research.
    Binder MS; Hernandez-Zegada CJ; Potter CT; Nolan SO; Lugo JN
    J Neurosci Methods; 2018 Nov; 309():6-12. PubMed ID: 30118724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sex-specific modulation of early life vocalization and cognition by Fmr1 gene dosage in a mouse model of Fragile X Syndrome.
    Giua G; Iezzi D; Caceres-Rodriguez A; Strauss B; Chavis P; Manzoni OJ
    Biol Sex Differ; 2024 Feb; 15(1):18. PubMed ID: 38383408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversal of ultrasonic vocalization deficits in a mouse model of Fragile X Syndrome with minocycline treatment or genetic reduction of MMP-9.
    Toledo MA; Wen TH; Binder DK; Ethell IM; Razak KA
    Behav Brain Res; 2019 Oct; 372():112068. PubMed ID: 31271818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NS-
    Binder MS; Lugo JN
    Brain Behav; 2017 Nov; 7(11):e00857. PubMed ID: 29201556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal and spectral differences in the ultrasonic vocalizations of fragile X knock out mice during postnatal development.
    Lai JK; Sobala-Drozdowski M; Zhou L; Doering LC; Faure PA; Foster JA
    Behav Brain Res; 2014 Feb; 259():119-30. PubMed ID: 24211451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput analysis of vocalizations reveals sex-specific changes in Fmr1 mutant pups.
    Nolan SO; Hodges SL; Lugo JN
    Genes Brain Behav; 2020 Feb; 19(2):e12611. PubMed ID: 31587487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CD-1 Outbred Mice Produce Less Variable Ultrasonic Vocalizations Than FVB Inbred Mice, While Displaying a Similar Developmental Trajectory.
    Binder MS; Shi HD; Bordey A
    Front Psychiatry; 2021; 12():687060. PubMed ID: 34475829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic vocalizations in laboratory mice: strain, age, and sex differences.
    Caruso A; Marconi MA; Scattoni ML; Ricceri L
    Genes Brain Behav; 2022 Jun; 21(5):e12815. PubMed ID: 35689354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of ultrasonic vocalizations of Fragile X mice.
    Belagodu AP; Johnson AM; Galvez R
    Behav Brain Res; 2016 Sep; 310():76-83. PubMed ID: 27142239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated detection of 50-kHz ultrasonic vocalizations using template matching in XBAT.
    Barker DJ; Herrera C; West MO
    J Neurosci Methods; 2014 Oct; 236():68-75. PubMed ID: 25128724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rodent ultrasonic vocal interaction resolved with millimeter precision using hybrid beamforming.
    Sterling ML; Teunisse R; Englitz B
    Elife; 2023 Jul; 12():. PubMed ID: 37493217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of ultrasonic vocalizations from mice using computer vision and machine learning.
    Fonseca AH; Santana GM; Bosque Ortiz GM; Bampi S; Dietrich MO
    Elife; 2021 Mar; 10():. PubMed ID: 33787490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A role for strain differences in waveforms of ultrasonic vocalizations during male-female interaction.
    Sugimoto H; Okabe S; Kato M; Koshida N; Shiroishi T; Mogi K; Kikusui T; Koide T
    PLoS One; 2011; 6(7):e22093. PubMed ID: 21818297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medial Preoptic Area Modulates Courtship Ultrasonic Vocalization in Adult Male Mice.
    Gao SC; Wei YC; Wang SR; Xu XH
    Neurosci Bull; 2019 Aug; 35(4):697-708. PubMed ID: 30900143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The temporal organization of mouse ultrasonic vocalizations.
    Castellucci GA; Calbick D; McCormick D
    PLoS One; 2018; 13(10):e0199929. PubMed ID: 30376572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral and temporal properties of calls reveal deficits in ultrasonic vocalizations of adult Fmr1 knockout mice.
    Hodges SL; Nolan SO; Reynolds CD; Lugo JN
    Behav Brain Res; 2017 Aug; 332():50-58. PubMed ID: 28552599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sex-specific and genotype-specific differences in vocalization development in FMR1 knockout mice.
    Reynolds CD; Nolan SO; Jefferson T; Lugo JN
    Neuroreport; 2016 Dec; 27(18):1331-1335. PubMed ID: 27824730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CBA/CaJ mouse ultrasonic vocalizations depend on prior social experience.
    Burke K; Screven LA; Dent ML
    PLoS One; 2018; 13(6):e0197774. PubMed ID: 29874248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.