These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 32805450)
1. Transcriptomics and proteomics-based analysis of heterosis on main economic traits of silkworm, Bombyx mori. Xiao R; Yuan Y; Zhu F; He S; Ge Q; Wang X; Taha R; Chen K J Proteomics; 2020 Oct; 229():103941. PubMed ID: 32805450 [TBL] [Abstract][Full Text] [Related]
2. Comparative transcriptome and proteome reveal synergistic functions of differentially expressed genes and proteins implicated in an over-dominant silkworm heterosis of increased silk yield. Xiao R; Yuan Y; Xia H; Ge Q; Chen L; Zhu F; Xu J; Wang X; Fan Y; Wang Q; Yang Y; Chen K Insect Mol Biol; 2022 Oct; 31(5):551-567. PubMed ID: 35445454 [TBL] [Abstract][Full Text] [Related]
3. Comprehensive silk gland multi-omics comparison illuminates two alternative mechanisms in silkworm heterosis. Xu H; Chen L; Tong XL; Hu H; Liu LY; Liu GC; Zhu YN; Zhao RP; Wang W; Dai FY; Li X; Xiang H Zool Res; 2022 Jul; 43(4):585-596. PubMed ID: 35726584 [TBL] [Abstract][Full Text] [Related]
4. New insight into the mechanism underlying the silk gland biological process by knocking out fibroin heavy chain in the silkworm. Cui Y; Zhu Y; Lin Y; Chen L; Feng Q; Wang W; Xiang H BMC Genomics; 2018 Mar; 19(1):215. PubMed ID: 29580211 [TBL] [Abstract][Full Text] [Related]
5. Identification of Genes that Control Silk Yield by RNA Sequencing Analysis of Silkworm (Bombyx mori) Strains of Variable Silk Yield. Luan Y; Zuo W; Li C; Gao R; Zhang H; Tong X; Han M; Hu H; Lu C; Dai F Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30467288 [TBL] [Abstract][Full Text] [Related]
6. Identification of genes associated with the silk gland size using multi-omics in silkworm (Bombyx mori). Sun L; Sun B; Chen L; Ge Q; Chen K Insect Mol Biol; 2024 Feb; 33(1):1-16. PubMed ID: 37676698 [TBL] [Abstract][Full Text] [Related]
7. Comparative proteomic and phosphoproteomic analysis of the silkworm (Bombyx mori) posterior silk gland under high temperature treatment. Li J; Ye L; Lan T; Yu M; Liang J; Zhong B Mol Biol Rep; 2012 Aug; 39(8):8447-56. PubMed ID: 22707192 [TBL] [Abstract][Full Text] [Related]
8. Microarray analysis of New Green Cocoon associated genes in silkworm, Bombyx mori. Lu YR; He SZ; Tong XL; Han MJ; Li CL; Li ZQ; Dai FY Insect Sci; 2016 Jun; 23(3):386-95. PubMed ID: 26936509 [TBL] [Abstract][Full Text] [Related]
9. A Hox Gene, Antennapedia, Regulates Expression of Multiple Major Silk Protein Genes in the Silkworm Bombyx mori. Tsubota T; Tomita S; Uchino K; Kimoto M; Takiya S; Kajiwara H; Yamazaki T; Sezutsu H J Biol Chem; 2016 Mar; 291(13):7087-96. PubMed ID: 26814126 [TBL] [Abstract][Full Text] [Related]
10. Analyses of the Molecular Mechanisms Associated with Silk Production in Silkworm by iTRAQ-Based Proteomics and RNA-Sequencing-Based Transcriptomics. Wang S; You Z; Feng M; Che J; Zhang Y; Qian Q; Komatsu S; Zhong B J Proteome Res; 2016 Jan; 15(1):15-28. PubMed ID: 26626507 [TBL] [Abstract][Full Text] [Related]
11. Quantitative proteomic and transcriptomic analyses of molecular mechanisms associated with low silk production in silkworm Bombyx mori. Wang SH; You ZY; Ye LP; Che J; Qian Q; Nanjo Y; Komatsu S; Zhong BX J Proteome Res; 2014 Feb; 13(2):735-51. PubMed ID: 24428189 [TBL] [Abstract][Full Text] [Related]
12. Heterosis and differential gene expression in hybrids and parents in Bombyx mori by digital gene expression profiling. Wang H; Fang Y; Wang L; Zhu W; Ji H; Wang H; Xu S; Sima Y Sci Rep; 2015 Mar; 5():8750. PubMed ID: 25736158 [TBL] [Abstract][Full Text] [Related]
13. Characteristics of phoxim-exposed gene transcription in the silk gland of silkworms. Ma L; Xie Y; Gu ZY; Wang BB; Li FC; Xu KZ; Shen WD; Li B Pestic Biochem Physiol; 2013 Nov; 107(3):391-7. PubMed ID: 24267702 [TBL] [Abstract][Full Text] [Related]
14. Molecular mechanisms of silk gland damage caused by phoxim exposure and protection of phoxim-induced damage by cerium chloride in Bombyx mori. Li B; Sun Q; Yu X; Xie Y; Hong J; Zhao X; Sang X; Shen W; Hong F Environ Toxicol; 2015 Sep; 30(9):1102-11. PubMed ID: 24616058 [TBL] [Abstract][Full Text] [Related]
15. Developmental proteome dynamics of silk glands in the 5th instar larval stage of Bombyx mori L (CSR2×CSR4). Bovilla VR; Padwal MK; Siripurapu P; Basu B; Mamillapalli A Biochim Biophys Acta; 2016 Jul; 1864(7):860-8. PubMed ID: 27032299 [TBL] [Abstract][Full Text] [Related]
16. Comparative analysis of iTRAQ-based proteomes for cocoons between the domestic silkworm (Bombyx mori) and wild silkworm (Bombyx mandarina). Dai ZJ; Sun W; Zhang Z J Proteomics; 2019 Feb; 192():366-373. PubMed ID: 30287406 [TBL] [Abstract][Full Text] [Related]
17. Shotgun proteomic analysis of the Bombyx mori anterior silk gland: An insight into the biosynthetic fiber spinning process. Yi Q; Zhao P; Wang X; Zou Y; Zhong X; Wang C; Xiang Z; Xia QY Proteomics; 2013 Sep; 13(17):2657-63. PubMed ID: 23828816 [TBL] [Abstract][Full Text] [Related]
18. Differentially expressed genes in the silk gland of silkworm (Bombyx mori) treated with TiO Xue B; Li F; Hu J; Tian J; Li J; Cheng X; Hu J; Li B Gene; 2017 May; 611():21-26. PubMed ID: 28216040 [TBL] [Abstract][Full Text] [Related]
19. The development of silk glands and transcriptome aberration induced by cyantraniliprole in Bombyx mori. Liu X; Qi R; Li F; Han M; Li B; Sun H Pestic Biochem Physiol; 2024 Sep; 204():106111. PubMed ID: 39277412 [TBL] [Abstract][Full Text] [Related]
20. Comparative proteomic analysis of silkworm fat body after knocking out fibroin heavy chain gene: a novel insight into cross-talk between tissues. Chen Q; Ma Z; Wang X; Li Z; Zhang Y; Ma S; Zhao P; Xia Q Funct Integr Genomics; 2015 Sep; 15(5):611-37. PubMed ID: 26280517 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]