These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 32805570)

  • 1. Sensitivity of global major crop yields to climate variables: A non-parametric elasticity analysis.
    Liu D; Mishra AK; Ray DK
    Sci Total Environ; 2020 Dec; 748():141431. PubMed ID: 32805570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate drives variability and joint variability of global crop yields.
    Najafi E; Pal I; Khanbilvardi R
    Sci Total Environ; 2019 Apr; 662():361-372. PubMed ID: 30690370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of climate signals in the crop yield record of sub-Saharan Africa.
    Hoffman AL; Kemanian AR; Forest CE
    Glob Chang Biol; 2018 Jan; 24(1):143-157. PubMed ID: 28892592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate change impacts on crop yield: evidence from China.
    Wei T; Cherry TL; Glomrød S; Zhang T
    Sci Total Environ; 2014 Nov; 499():133-40. PubMed ID: 25181045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate change has likely already affected global food production.
    Ray DK; West PC; Clark M; Gerber JS; Prishchepov AV; Chatterjee S
    PLoS One; 2019; 14(5):e0217148. PubMed ID: 31150427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of climate in the trend and variability of Ethiopia's cereal crop yields.
    Yang M; Wang G; Ahmed KF; Adugna B; Eggen M; Atsbeha E; You L; Koo J; Anagnostou E
    Sci Total Environ; 2020 Jun; 723():137893. PubMed ID: 32220729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Comparison of potential yield and resource utilization efficiency of main food crops in three provinces of Northeast China under climate change].
    Wang XY; Yang XG; Sun S; Xie WJ
    Ying Yong Sheng Tai Xue Bao; 2015 Oct; 26(10):3091-102. PubMed ID: 26995918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate variation explains a third of global crop yield variability.
    Ray DK; Gerber JS; MacDonald GK; West PC
    Nat Commun; 2015 Jan; 6():5989. PubMed ID: 25609225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the impacts of climatic trend and fluctuation on crop yields in northern China.
    Qiao J; Yu D; Liu Y
    Environ Monit Assess; 2017 Oct; 189(11):532. PubMed ID: 28967045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The central trend in crop yields under climate change in China: A systematic review.
    Liu Y; Li N; Zhang Z; Huang C; Chen X; Wang F
    Sci Total Environ; 2020 Feb; 704():135355. PubMed ID: 31812435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate-Driven Crop Yield and Yield Variability and Climate Change Impacts on the U.S. Great Plains Agricultural Production.
    Kukal MS; Irmak S
    Sci Rep; 2018 Feb; 8(1):3450. PubMed ID: 29472598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impacts of meteorological factors and ozone variation on crop yields in China concerning carbon neutrality objectives in 2060.
    Xu B; Wang T; Gao L; Ma D; Song R; Zhao J; Yang X; Li S; Zhuang B; Li M; Xie M
    Environ Pollut; 2023 Jan; 317():120715. PubMed ID: 36436657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yield trends and variabilities explained by climatic change in coastal and non-coastal areas of Bangladesh.
    Hasan MK; Kumar L
    Sci Total Environ; 2021 Nov; 795():148814. PubMed ID: 34237533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance.
    Mills G; Sharps K; Simpson D; Pleijel H; Frei M; Burkey K; Emberson L; Uddling J; Broberg M; Feng Z; Kobayashi K; Agrawal M
    Glob Chang Biol; 2018 Oct; 24(10):4869-4893. PubMed ID: 30084165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between temperature and drought in global and regional crop yield variability during 1961-2014.
    Matiu M; Ankerst DP; Menzel A
    PLoS One; 2017; 12(5):e0178339. PubMed ID: 28552938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing temperature cuts back crop yields in Hungary over the last 90 years.
    Pinke Z; Lövei GL
    Glob Chang Biol; 2017 Dec; 23(12):5426-5435. PubMed ID: 28699259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change.
    Fereidoon M; Koch M
    Sci Total Environ; 2018 Jul; 630():502-516. PubMed ID: 29486443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water productivity of rainfed maize and wheat: A local to global perspective.
    Rattalino Edreira JI; Guilpart N; Sadras V; Cassman KG; van Ittersum MK; Schils RLM; Grassini P
    Agric For Meteorol; 2018 Sep; 259():364-373. PubMed ID: 30224833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin.
    Mishra A; Singh R; Raghuwanshi NS; Chatterjee C; Froebrich J
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S132-8. PubMed ID: 23800620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impacts of climate variability and adaptation strategies on crop yields and soil organic carbon in the US Midwest.
    Liu L; Basso B
    PLoS One; 2020; 15(1):e0225433. PubMed ID: 31990907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.