BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32805613)

  • 1. Current approaches for detection of hydrogen sulfide and persulfidation in biological systems.
    Zhao D; Zhang J; Zhou M; Zhou H; Gotor C; Romero LC; Shen J; Yuan X; Xie Y
    Plant Physiol Biochem; 2020 Oct; 155():367-373. PubMed ID: 32805613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen Sulfide Signaling in Plants: Emerging Roles of Protein Persulfidation.
    Aroca A; Gotor C; Romero LC
    Front Plant Sci; 2018; 9():1369. PubMed ID: 30283480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of protein persulfidation in plants by the dimedone switch method.
    Aroca A; Jurado-Flores A; Filipovic MR; Gotor C; Romero LC
    Methods Enzymol; 2022; 676():385-402. PubMed ID: 36280359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox-based protein persulfidation in guard cell ABA signaling.
    Zhou H; Zhang J; Shen J; Zhou M; Yuan X; Xie Y
    Plant Signal Behav; 2020 May; 15(5):1741987. PubMed ID: 32178559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein persulfidation: Rewiring the hydrogen sulfide signaling in cell stress response.
    He B; Zhang Z; Huang Z; Duan X; Wang Y; Cao J; Li L; He K; Nice EC; He W; Gao W; Shen Z
    Biochem Pharmacol; 2023 Mar; 209():115444. PubMed ID: 36736962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Proteomic Mapping of Cysteine Persulfidation.
    Fu L; Liu K; He J; Tian C; Yu X; Yang J
    Antioxid Redox Signal; 2020 Nov; 33(15):1061-1076. PubMed ID: 31411056
    [No Abstract]   [Full Text] [Related]  

  • 7. Hydrogen sulfide signaling in plant adaptations to adverse conditions: molecular mechanisms.
    Aroca A; Zhang J; Xie Y; Romero LC; Gotor C
    J Exp Bot; 2021 Aug; 72(16):5893-5904. PubMed ID: 34077530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen Sulfide Signaling in Plants.
    Huang J; Xie Y
    Antioxid Redox Signal; 2023 Jul; 39(1-3):40-58. PubMed ID: 36924280
    [No Abstract]   [Full Text] [Related]  

  • 9. Persulfidation is the mechanism underlying sulfide-signaling of autophagy.
    Gotor C; Aroca A; Romero LC
    Autophagy; 2022 Mar; 18(3):695-697. PubMed ID: 34097571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persulfidation-based Modification of Cysteine Desulfhydrase and the NADPH Oxidase RBOHD Controls Guard Cell Abscisic Acid Signaling.
    Shen J; Zhang J; Zhou M; Zhou H; Cui B; Gotor C; Romero LC; Fu L; Yang J; Foyer CH; Pan Q; Shen W; Xie Y
    Plant Cell; 2020 Apr; 32(4):1000-1017. PubMed ID: 32024687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. S-desulfurization: A different covalent modification mechanism from persulfidation by GSH.
    Zhu Y; Liu L; Tan D; Sun W; Ke Q; Yue X; Bai B
    Free Radic Biol Med; 2021 May; 167():54-65. PubMed ID: 33711417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in diverse biological processes in Arabidopsis.
    Aroca A; Benito JM; Gotor C; Romero LC
    J Exp Bot; 2017 Oct; 68(17):4915-4927. PubMed ID: 28992305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persulfidation of ATG18a regulates autophagy under ER stress in
    Aroca A; Yruela I; Gotor C; Bassham DC
    Proc Natl Acad Sci U S A; 2021 May; 118(20):. PubMed ID: 33975948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective Persulfide Detection Reveals Evolutionarily Conserved Antiaging Effects of S-Sulfhydration.
    Zivanovic J; Kouroussis E; Kohl JB; Adhikari B; Bursac B; Schott-Roux S; Petrovic D; Miljkovic JL; Thomas-Lopez D; Jung Y; Miler M; Mitchell S; Milosevic V; Gomes JE; Benhar M; Gonzalez-Zorn B; Ivanovic-Burmazovic I; Torregrossa R; Mitchell JR; Whiteman M; Schwarz G; Snyder SH; Paul BD; Carroll KS; Filipovic MR
    Cell Metab; 2019 Dec; 30(6):1152-1170.e13. PubMed ID: 31735592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein Persulfidation in Plants: Function and Mechanism.
    Wang P; Fang H; Gao R; Liao W
    Antioxidants (Basel); 2021 Oct; 10(10):. PubMed ID: 34679765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemoselective Proteomics, Zinc Fingers, and a Zinc(II) Model for H
    Stoltzfus AT; Ballot JG; Vignane T; Li H; Worth MM; Muller L; Siegler MA; Kane MA; Filipovic MR; Goldberg DP; Michel SLJ
    Angew Chem Int Ed Engl; 2024 Jul; 63(27):e202401003. PubMed ID: 38808693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signaling by hydrogen sulfide and cyanide through post-translational modification.
    Gotor C; García I; Aroca Á; Laureano-Marín AM; Arenas-Alfonseca L; Jurado-Flores A; Moreno I; Romero LC
    J Exp Bot; 2019 Aug; 70(16):4251-4265. PubMed ID: 31087094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Hydrogen Sulfide and Polysulfides in Neurological Diseases: Focus on Protein S-Persulfidation.
    Sun HJ; Wu ZY; Nie XW; Bian JS
    Curr Neuropharmacol; 2021; 19(6):868-884. PubMed ID: 32888271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Interplay between Hydrogen Sulfide and Phytohormone Signaling Pathways under Challenging Environments.
    Khan MSS; Islam F; Ye Y; Ashline M; Wang D; Zhao B; Fu ZQ; Chen J
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-Free Quantitative Proteomic Analysis of Nitrogen Starvation in Arabidopsis Root Reveals New Aspects of H
    Jurado-Flores A; Romero LC; Gotor C
    Antioxidants (Basel); 2021 Mar; 10(4):. PubMed ID: 33805243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.