These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32805632)

  • 41. Surgical workflow recognition with 3DCNN for Sleeve Gastrectomy.
    Zhang B; Ghanem A; Simes A; Choi H; Yoo A
    Int J Comput Assist Radiol Surg; 2021 Nov; 16(11):2029-2036. PubMed ID: 34415503
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-Density Surface EMG-Based Gesture Recognition Using a 3D Convolutional Neural Network.
    Chen J; Bi S; Zhang G; Cao G
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098264
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Dual Neural Architecture Combined SqueezeNet with OctConv for LiDAR Data Classification.
    Wang A; Wang M; Jiang K; Cao M; Iwahori Y
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31726726
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Flexible Coding Scheme Based on Block Krylov Subspace Approximation for Light Field Displays with Stacked Multiplicative Layers.
    Ravishankar J; Sharma M; Gopalakrishnan P
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283132
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multiscale brain MRI super-resolution using deep 3D convolutional networks.
    Pham CH; Tor-Díez C; Meunier H; Bednarek N; Fablet R; Passat N; Rousseau F
    Comput Med Imaging Graph; 2019 Oct; 77():101647. PubMed ID: 31493703
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of Deep Neural Network Compression Methods for Edge Devices Using Weighted Score-Based Ranking Scheme.
    Ademola OA; Leier M; Petlenkov E
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833610
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Protein secondary structure prediction improved by recurrent neural networks integrated with two-dimensional convolutional neural networks.
    Guo Y; Wang B; Li W; Yang B
    J Bioinform Comput Biol; 2018 Oct; 16(5):1850021. PubMed ID: 30419785
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Accelerating Convolutional Neural Networks by Removing Interspatial and Interkernel Redundancies.
    Zeng L; Tian X
    IEEE Trans Cybern; 2020 Feb; 50(2):452-464. PubMed ID: 30346299
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Atrial fibrillation classification based on convolutional neural networks.
    Lee KS; Jung S; Gil Y; Son HS
    BMC Med Inform Decis Mak; 2019 Oct; 19(1):206. PubMed ID: 31664990
    [TBL] [Abstract][Full Text] [Related]  

  • 50. HMC: Hybrid model compression method based on layer sensitivity grouping.
    Yang G; Yu S; Yang H; Nie Z; Wang J
    PLoS One; 2023; 18(10):e0292517. PubMed ID: 37812605
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structured pruning of recurrent neural networks through neuron selection.
    Wen L; Zhang X; Bai H; Xu Z
    Neural Netw; 2020 Mar; 123():134-141. PubMed ID: 31855748
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Deep 3D convolutional neural networks for fast super-resolution ultrasound imaging.
    Brown K; Dormer J; Fei B; Hoyt K
    Proc SPIE Int Soc Opt Eng; 2019 Feb; 10955():. PubMed ID: 32476699
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Low-complexity lung ultrasound video scoring by means of intensity projection-based video compression.
    Khan U; Afrakhteh S; Mento F; Mert G; Smargiassi A; Inchingolo R; Tursi F; Macioce VN; Perrone T; Iacca G; Demi L
    Comput Biol Med; 2024 Feb; 169():107885. PubMed ID: 38141447
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application of Deep Compression Technique in Spiking Neural Network Chip.
    Liu Y; Qian K; Hu S; An K; Xu S; Zhan X; Wang JJ; Guo R; Wu Y; Chen TP; Yu Q; Liu Y
    IEEE Trans Biomed Circuits Syst; 2020 Apr; 14(2):274-282. PubMed ID: 31715570
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differential convolutional neural network.
    Sarıgül M; Ozyildirim BM; Avci M
    Neural Netw; 2019 Aug; 116():279-287. PubMed ID: 31125914
    [TBL] [Abstract][Full Text] [Related]  

  • 56. MobilePrune: Neural Network Compression via
    Shao Y; Zhao K; Cao Z; Peng Z; Peng X; Li P; Wang Y; Ma J
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684708
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Region-of-interest undersampled MRI reconstruction: A deep convolutional neural network approach.
    Sun L; Fan Z; Ding X; Huang Y; Paisley J
    Magn Reson Imaging; 2019 Nov; 63():185-192. PubMed ID: 31352015
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multidimensional Pruning and Its Extension: A Unified Framework for Model Compression.
    Guo J; Xu D; Ouyang W
    IEEE Trans Neural Netw Learn Syst; 2024 Sep; 35(9):13056-13070. PubMed ID: 37220047
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tensor-Factorized Neural Networks.
    Chien JT; Bao YT
    IEEE Trans Neural Netw Learn Syst; 2018 May; 29(5):1998-2011. PubMed ID: 28436897
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantized CNN: A Unified Approach to Accelerate and Compress Convolutional Networks.
    Cheng J; Wu J; Leng C; Wang Y; Hu Q
    IEEE Trans Neural Netw Learn Syst; 2018 Oct; 29(10):4730-4743. PubMed ID: 29990226
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.