These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32805658)

  • 1. Environmental transformation of graphene oxide in the aquatic environment.
    Zhao Y; Liu Y; Zhang X; Liao W
    Chemosphere; 2021 Jan; 262():127885. PubMed ID: 32805658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity Studies on Graphene-Based Nanomaterials in Aquatic Organisms: Current Understanding.
    Malhotra N; Villaflores OB; Audira G; Siregar P; Lee JS; Ger TR; Hsiao CD
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32784859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sunlight affects aggregation and deposition of graphene oxide in the aquatic environment.
    Chowdhury I; Hou WC; Goodwin D; Henderson M; Zepp RG; Bouchard D
    Water Res; 2015 Jul; 78():37-46. PubMed ID: 25898251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation.
    Zhao J; Wang Z; White JC; Xing B
    Environ Sci Technol; 2014 Sep; 48(17):9995-10009. PubMed ID: 25122195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of oxidation degree on photo-transformation and the resulting toxicity of graphene oxide in aqueous environment.
    Zhao FF; Wang SC; Zhu ZL; Wang SG; Liu FF; Liu GZ
    Environ Pollut; 2019 Jun; 249():1106-1114. PubMed ID: 31146316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene oxide-based nanomaterials for the treatment of pollutants in the aquatic environment: Recent trends and perspectives - A review.
    Dayana Priyadharshini S; Manikandan S; Kiruthiga R; Rednam U; Babu PS; Subbaiya R; Karmegam N; Kim W; Govarthanan M
    Environ Pollut; 2022 Aug; 306():119377. PubMed ID: 35490997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of graphene oxide and graphene oxide-based nanomaterials in the removal of pharmaceuticals from aqueous media: a review.
    Khan A; Wang J; Li J; Wang X; Chen Z; Alsaedi A; Hayat T; Chen Y; Wang X
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):7938-7958. PubMed ID: 28111721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoreactivity of graphene oxide in aqueous system: Reactive oxygen species formation and bisphenol A degradation.
    Adeleye AS; Wang X; Wang F; Hao R; Song W; Li Y
    Chemosphere; 2018 Mar; 195():344-350. PubMed ID: 29274574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of graphene oxide nanomaterials from aqueous media via coagulation: Effects of water chemistry and natural organic matter.
    Duan L; Hao R; Xu Z; He X; Adeleye AS; Li Y
    Chemosphere; 2017 Feb; 168():1051-1057. PubMed ID: 27816284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic-property dependent interactions between tetracycline and graphene nanomaterials in aqueous solution.
    He L; Liu FF; Zhao M; Qi Z; Sun X; Afzal MZ; Sun X; Li Y; Hao J; Wang S
    J Environ Sci (China); 2018 Apr; 66():286-294. PubMed ID: 29628096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental fate and risk of ultraviolet- and visible-light-transformed graphene oxide: A comparative study.
    Gao Y; Ren X; Zhang X; Chen C
    Environ Pollut; 2019 Aug; 251():821-829. PubMed ID: 31125812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of graphene oxides and silver-graphene oxides on aquatic microbial activity.
    Ko K; Kim MJ; Lee JY; Kim W; Chung H
    Sci Total Environ; 2019 Feb; 651(Pt 1):1087-1095. PubMed ID: 30266053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano-zinc oxide incorporated graphene oxide/nanocellulose composite for the adsorption and photo catalytic degradation of ciprofloxacin hydrochloride from aqueous solutions.
    Anirudhan TS; Deepa JR
    J Colloid Interface Sci; 2017 Mar; 490():343-356. PubMed ID: 27914333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of heavy metals in aquatic environment by graphene oxide composites: a review.
    Zhang Q; Hou Q; Huang G; Fan Q
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):190-209. PubMed ID: 31838692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of graphene oxide on green algae Raphidocelis subcapitata.
    Nogueira PF; Nakabayashi D; Zucolotto V
    Aquat Toxicol; 2015 Sep; 166():29-35. PubMed ID: 26204245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment.
    Chowdhury I; Duch MC; Mansukhani ND; Hersam MC; Bouchard D
    Environ Sci Technol; 2013 Jun; 47(12):6288-96. PubMed ID: 23668881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous aggregation and stability of graphene nanoplatelets, graphene oxide, and reduced graphene oxide in simulated natural environmental conditions: complex roles of surface and solution chemistry.
    Ye N; Wang Z; Wang S; Fang H; Wang D
    Environ Sci Pollut Res Int; 2018 Apr; 25(11):10956-10965. PubMed ID: 29399742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fate and risks of nanomaterials in aquatic and terrestrial environments.
    Batley GE; Kirby JK; McLaughlin MJ
    Acc Chem Res; 2013 Mar; 46(3):854-62. PubMed ID: 22759090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photochlorination-induced transformation of graphene oxide: Mechanism and environmental fate.
    Du T; Adeleye AS; Keller AA; Wu Z; Han W; Wang Y; Zhang C; Li Y
    Water Res; 2017 Nov; 124():372-380. PubMed ID: 28783493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption mechanism of emerging and conventional phenolic compounds on graphene oxide nanoflakes in water.
    Catherine HN; Ou MH; Manu B; Shih YH
    Sci Total Environ; 2018 Sep; 635():629-638. PubMed ID: 29679835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.