These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63 related articles for article (PubMed ID: 328057)
1. Modification of the cysteine residues of the lactose repressor protein using chromophoric probes. Yang DS; Burgum AA; Matthews KS Biochim Biophys Acta; 1977 Jul; 493(1):24-36. PubMed ID: 328057 [No Abstract] [Full Text] [Related]
2. Lactose repressor protein reaction with 2-chloromercuri-4-nitrophenol. Yang DS; Matthews KS J Mol Biol; 1976 May; 103(2):433-7. PubMed ID: 781275 [No Abstract] [Full Text] [Related]
4. Modification of the cysteine residues of cytochrome P-450cam with 2-bromoacetamido-4-nitrophenol. Haniu M; Yasunobu KT; Gunsalus IC Biochem Biophys Res Commun; 1982 Aug; 107(3):1075-81. PubMed ID: 7138513 [No Abstract] [Full Text] [Related]
5. Isolation of amino-terminal fragment of lactose repressor necessary for DNA binding. Geisler N; Weber K Biochemistry; 1977 Mar; 16(5):938-43. PubMed ID: 321012 [TBL] [Abstract][Full Text] [Related]
6. Modification of tyrosine residues of the lactose repressor protein. Alexander ME; Burgum AA; Noall RA; Shaw MD; Matthews KS Biochim Biophys Acta; 1977 Aug; 493(2):367-79. PubMed ID: 329889 [TBL] [Abstract][Full Text] [Related]
7. Photochemical reactions of LAC repressor. Effects on inducer binding. Charlier M; Culard F; Maurizot JC; Helene C Biochem Biophys Res Commun; 1977 Jan; 74(2):690-8. PubMed ID: 319800 [No Abstract] [Full Text] [Related]
9. Interaction of sugars with the membrane protein component of the lactose transport system of Escherichia coli. Carter JR; Fox CF; Kennedy EP Proc Natl Acad Sci U S A; 1968 Jun; 60(2):725-32. PubMed ID: 4882748 [No Abstract] [Full Text] [Related]
10. Binding of lactose repressor to poly d(A-T) : OD AND CD melting of the complex. Clement R; Daune MP Nucleic Acids Res; 1975 Mar; 2(3):303-18. PubMed ID: 1093136 [TBL] [Abstract][Full Text] [Related]
12. Escherichia coli lactose repressor: isolation of two different homogeneous headpieces and the existence of a hinge region between residues 50 and 60 in the repressor molecule. Geisler N; Weber K FEBS Lett; 1978 Mar; 87(2):215-8. PubMed ID: 344067 [No Abstract] [Full Text] [Related]
13. The binding of lac repressor and the catabolite gene activator protein to halogen-substituted analogues of poly[d(A-T)]. Lin SY; Riggs AD Biochim Biophys Acta; 1976 May; 432(2):185-91. PubMed ID: 773434 [TBL] [Abstract][Full Text] [Related]
14. Nonspecific DNA binding of genome-regulating proteins as a biological control mechanism: measurement of DNA-bound Escherichia coli lac repressor in vivo. Kao-Huang Y; Revzin A; Butler AP; O'Conner P; Noble DW; von Hippel PH Proc Natl Acad Sci U S A; 1977 Oct; 74(10):4228-32. PubMed ID: 412185 [TBL] [Abstract][Full Text] [Related]
15. lac repressor changes conformation upon binding to poly[dA-T)]. Kelsey DE; Rounds TC; York SS Proc Natl Acad Sci U S A; 1979 Jun; 76(6):2649-53. PubMed ID: 379862 [TBL] [Abstract][Full Text] [Related]
16. Non-specific DNA binding of genome regulating proteins as a biological control mechanism: I. The lac operon: equilibrium aspects. von Hippel PH; Revzin A; Gross CA; Wang AC Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4808-12. PubMed ID: 4612528 [TBL] [Abstract][Full Text] [Related]
17. Chemical modification of lactose repressor protein using N-substituted maleimides. Brown RD; Matthews KS J Biol Chem; 1979 Jun; 254(12):5128-34. PubMed ID: 376506 [TBL] [Abstract][Full Text] [Related]
18. Ultraviolet difference spectra of the lactose repressor protein. II. Trypsin core protein. Matthews KS Biochim Biophys Acta; 1974 Aug; 359(2):334-40. PubMed ID: 4605413 [No Abstract] [Full Text] [Related]
19. The lac repressor protein: molecular shape, subunit structure, and proposed model for operator interaction based on structural studies of microcrystals. Steitz TA; Richmond TJ; Wise D; Engelman D Proc Natl Acad Sci U S A; 1974 Mar; 71(3):593-7. PubMed ID: 4595565 [TBL] [Abstract][Full Text] [Related]
20. Assignment of catalytically essential cysteine residues in aspartase by selective chemical modification with N-(7-dimethylamino-4-methylcoumarynyl)maleimide. Ida N; Tokushige M J Biochem; 1985 Sep; 98(3):793-7. PubMed ID: 3910645 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]