These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
393 related articles for article (PubMed ID: 32805790)
1. Selective Etching of Graphene Membrane Nanopores: From Molecular Sieving to Extreme Permeance. Schlichting KP; Poulikakos D ACS Appl Mater Interfaces; 2020 Aug; 12(32):36468-36477. PubMed ID: 32805790 [TBL] [Abstract][Full Text] [Related]
2. Tunable Pore Size from Sub-Nanometer to a Few Nanometers in Large-Area Graphene Nanoporous Atomically Thin Membranes. Chen X; Zhang S; Hou D; Duan H; Deng B; Zeng Z; Liu B; Sun L; Song R; Du J; Gao P; Peng H; Liu Z; Wang L ACS Appl Mater Interfaces; 2021 Jun; ():. PubMed ID: 34133124 [TBL] [Abstract][Full Text] [Related]
3. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation. Yuan Z; Govind Rajan A; Misra RP; Drahushuk LW; Agrawal KV; Strano MS; Blankschtein D ACS Nano; 2017 Aug; 11(8):7974-7987. PubMed ID: 28696710 [TBL] [Abstract][Full Text] [Related]
4. Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation. Zhao J; He G; Huang S; Villalobos LF; Dakhchoune M; Bassas H; Agrawal KV Sci Adv; 2019 Jan; 5(1):eaav1851. PubMed ID: 30746475 [TBL] [Abstract][Full Text] [Related]
5. Tuning the Transport Properties of Gases in Porous Graphene Membranes with Controlled Pore Size and Thickness. Ashirov T; Yazaydin AO; Coskun A Adv Mater; 2022 Feb; 34(5):e2106785. PubMed ID: 34775644 [TBL] [Abstract][Full Text] [Related]
6. Predicting Gas Separation through Graphene Nanopore Ensembles with Realistic Pore Size Distributions. Yuan Z; Govind Rajan A; He G; Misra RP; Strano MS; Blankschtein D ACS Nano; 2021 Jan; 15(1):1727-1740. PubMed ID: 33439000 [TBL] [Abstract][Full Text] [Related]
7. Stable, Temperature-Dependent Gas Mixture Permeation and Separation through Suspended Nanoporous Single-Layer Graphene Membranes. Yuan Z; Benck JD; Eatmon Y; Blankschtein D; Strano MS Nano Lett; 2018 Aug; 18(8):5057-5069. PubMed ID: 30044919 [TBL] [Abstract][Full Text] [Related]
8. Rodriguez A; Schlichting KP; Poulikakos D; Hu M ACS Appl Mater Interfaces; 2021 Aug; 13(33):39701-39710. PubMed ID: 34392678 [TBL] [Abstract][Full Text] [Related]
9. Direct Chemical Vapor Deposition Synthesis of Porous Single-Layer Graphene Membranes with High Gas Permeances and Selectivities. Yuan Z; He G; Faucher S; Kuehne M; Li SX; Blankschtein D; Strano MS Adv Mater; 2021 Nov; 33(44):e2104308. PubMed ID: 34510595 [TBL] [Abstract][Full Text] [Related]
10. Analytical Prediction of Gas Permeation through Graphene Nanopores of Varying Sizes: Understanding Transitions across Multiple Transport Regimes. Yuan Z; Misra RP; Rajan AG; Strano MS; Blankschtein D ACS Nano; 2019 Oct; 13(10):11809-11824. PubMed ID: 31532624 [TBL] [Abstract][Full Text] [Related]
11. Ion-Gated Gas Separation through Porous Graphene. Tian Z; Mahurin SM; Dai S; Jiang DE Nano Lett; 2017 Mar; 17(3):1802-1807. PubMed ID: 28231000 [TBL] [Abstract][Full Text] [Related]
12. Ultrathin Carbon Molecular Sieve Films and Room-Temperature Oxygen Functionalization for Gas-Sieving. Huang S; Villalobos LF; Babu DJ; He G; Li M; Züttel A; Agrawal KV ACS Appl Mater Interfaces; 2019 May; 11(18):16729-16736. PubMed ID: 30990645 [TBL] [Abstract][Full Text] [Related]
13. Gas Separation Membranes with Atom-Thick Nanopores: The Potential of Nanoporous Single-Layer Graphene. Villalobos LF; Babu DJ; Hsu KJ; Van Goethem C; Agrawal KV Acc Mater Res; 2022 Oct; 3(10):1073-1087. PubMed ID: 36338295 [TBL] [Abstract][Full Text] [Related]
14. Single-layer graphene membranes by crack-free transfer for gas mixture separation. Huang S; Dakhchoune M; Luo W; Oveisi E; He G; Rezaei M; Zhao J; Alexander DTL; Züttel A; Strano MS; Agrawal KV Nat Commun; 2018 Jul; 9(1):2632. PubMed ID: 29980683 [TBL] [Abstract][Full Text] [Related]
16. Single-layered fluorinated graphene nanopores for H Wang T; Liu L; Perez-Aguilar JM; Gu Z J Mol Model; 2022 Nov; 28(12):403. PubMed ID: 36445488 [TBL] [Abstract][Full Text] [Related]
17. From molecular sieving to gas effusion through nanoporous 2D graphenes: Comparison between analytical predictions and molecular simulations. Guo J; Galliero G; Vermorel R J Chem Phys; 2023 Aug; 159(8):. PubMed ID: 37606331 [TBL] [Abstract][Full Text] [Related]
18. Broadening the Gas Separation Utility of Monolayer Nanoporous Graphene Membranes by an Ionic Liquid Gating. Guo W; Mahurin SM; Unocic RR; Luo H; Dai S Nano Lett; 2020 Nov; 20(11):7995-8000. PubMed ID: 33064492 [TBL] [Abstract][Full Text] [Related]
19. Crystallization of gas-selective nanoporous graphene by competitive etching and growth: a modeling study. Dutta S; Vahdat MT; Rezaei M; Agrawal KV Sci Rep; 2019 Mar; 9(1):5202. PubMed ID: 30914744 [TBL] [Abstract][Full Text] [Related]
20. Molecular Self-Assembly Enables Tuning of Nanopores in Atomically Thin Graphene Membranes for Highly Selective Transport. Jang D; Bakli C; Chakraborty S; Karnik R Adv Mater; 2022 Mar; 34(11):e2108940. PubMed ID: 34984739 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]