BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 32805945)

  • 1. Conductive Polyacrylic Acid-Polyaniline as a Multifunctional Binder for Stable Organic Quinone Electrodes of Lithium-Ion Batteries.
    Tong J; Han C; Hao X; Qin X; Li B
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39630-39638. PubMed ID: 32805945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries.
    Shi Y; Zhou X; Yu G
    Acc Chem Res; 2017 Nov; 50(11):2642-2652. PubMed ID: 28981258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Growth and Wrapping of Aminoanthraquinone Nanowires in 3 D Graphene Framework as Foldable Organic Cathode for Lithium-Ion Batteries.
    Yang G; Bu F; Huang Y; Zhang Y; Shakir I; Xu Y
    ChemSusChem; 2017 Sep; 10(17):3419-3426. PubMed ID: 28722277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of SiO
    Liao Y; Liang K; Ren Y; Huang X
    Front Chem; 2020; 8():96. PubMed ID: 32154216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-Dimensional Conductive Gel Network as an Effective Binder for High-Performance Si Electrodes in Lithium-Ion Batteries.
    Yu X; Yang H; Meng H; Sun Y; Zheng J; Ma D; Xu X
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):15961-7. PubMed ID: 26154655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile Synthesis of Flower-Like MnCo
    Huang P; Xu F; Zhu G; Dong C; Jin B; Li H; Jiang Q
    Chempluschem; 2019 Oct; 84(10):1596-1603. PubMed ID: 31943928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional SA-PProDOT Binder for Lithium Ion Batteries.
    Ling M; Qiu J; Li S; Yan C; Kiefel MJ; Liu G; Zhang S
    Nano Lett; 2015 Jul; 15(7):4440-7. PubMed ID: 26061529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Graphene Based Bi-Function Humidity Tolerant Binder for Lithium-Ion Battery.
    Dong S; Zhu K; Dong X; Dong G; Gao Y; Ye K; Yan J; Wang G; Cao D
    Small Methods; 2023 Jul; 7(7):e2201393. PubMed ID: 37086109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cycling robust network binder for high performance Si-based negative electrodes for lithium-ion batteries.
    Zhang J; Wang N; Zhang W; Fang S; Yu Z; Shi B; Yang J
    J Colloid Interface Sci; 2020 Oct; 578():452-460. PubMed ID: 32535427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the Molecular Weight of Poly-Acrylic Acid Binder on Performance of Si-Alloy/Graphite Composite Anodes for Lithium-Ion Batteries.
    Kasinathan R; Marinaro M; Axmann P; Wohlfahrt-Mehrens M
    Energy Technol (Weinh); 2018 Nov; 6(11):2256-2263. PubMed ID: 30775217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic hydrogen bond cross-linking binder with self-healing chemistry enables high-performance silicon anode in lithium-ion batteries.
    Chen J; Li Y; Wu X; Min H; Wang J; Liu X; Yang H
    J Colloid Interface Sci; 2024 Mar; 657():893-902. PubMed ID: 38091912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Sulfur Heterocyclic Quinone Cathode and a Multifunctional Binder for a High-Performance Rechargeable Lithium-Ion Battery.
    Ma T; Zhao Q; Wang J; Pan Z; Chen J
    Angew Chem Int Ed Engl; 2016 May; 55(22):6428-32. PubMed ID: 27080745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achievements, challenges, and perspectives in the design of polymer binders for advanced lithium-ion batteries.
    He Q; Ning J; Chen H; Jiang Z; Wang J; Chen D; Zhao C; Liu Z; Perepichka IF; Meng H; Huang W
    Chem Soc Rev; 2024 Jul; 53(13):7091-7157. PubMed ID: 38845536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyacrylic acid and β-cyclodextrin polymer cross-linking binders to enhance capacity performance of silicon/carbon composite electrodes in lithium-ion batteries.
    Lin S; Wang F; Hong R
    J Colloid Interface Sci; 2022 May; 613():857-865. PubMed ID: 35114521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Elastic Cross-Linked Binder for Silicon Anodes in Lithium-Ion Batteries with a High Mass Loading.
    Zhang S; Liu K; Xie J; Xu X; Tu J; Chen W; Chen F; Zhu T; Zhao X
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):6594-6602. PubMed ID: 36705634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collaborative Design of Hollow Nanocubes, In Situ Cross-Linked Binder, and Amorphous Void@SiO
    He D; Li P; Wang WA; Wan Q; Zhang J; Xi K; Ma X; Liu Z; Zhang L; Qu X
    Small; 2020 Feb; 16(5):e1905736. PubMed ID: 31867884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Self-Standing Binder-Free Biomimetic Cathode Based on LMO/CNT Enhanced with Graphene and PANI for Aqueous Rechargeable Batteries.
    Bubulinca C; Sapurina I; Kazantseva NE; Pechancova V; Saha P
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the Electrochemical Performance of SbTe Bimetallic Anodes for High-Performance Sodium-Ion Batteries: Roles of the Binder and Carbon Support Matrix.
    Nagulapati VM; Kim DS; Oh J; Lee JH; Hur J; Kim IT; Lee SG
    Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31394728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Binders, Carbons, and Solvents on the Stability of Phosphorus Anodes for Li-ion Batteries.
    Nitta N; Lei D; Jung HR; Gordon D; Zhao E; Gresham G; Cai J; Luzinov I; Yushin G
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):25991-26001. PubMed ID: 27636526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishing a Resilient Conductive Binding Network for Si-Based Anodes via Molecular Engineering.
    Chen S; Song Z; Wang L; Chen H; Zhang S; Pan F; Yang L
    Acc Chem Res; 2022 Aug; 55(15):2088-2102. PubMed ID: 35866547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.