BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 32805951)

  • 1. Enhanced Passivation and Carrier Collection in Ink-Processed PbS Quantum Dot Solar Cells via a Supplementary Ligand Strategy.
    Yang X; Yang J; Ullah MI; Xia Y; Liang G; Wang S; Zhang J; Hsu HY; Song H; Tang J
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42217-42225. PubMed ID: 32805951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroiodic Acid Additive Enhanced the Performance and Stability of PbS-QDs Solar Cells via Suppressing Hydroxyl Ligand.
    Yang X; Yang J; Khan J; Deng H; Yuan S; Zhang J; Xia Y; Deng F; Zhou X; Umar F; Jin Z; Song H; Cheng C; Sabry M; Tang J
    Nanomicro Lett; 2020 Jan; 12(1):37. PubMed ID: 34138233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation.
    Huang J; Xu B; Yuan C; Chen H; Sun J; Sun L; Agren H
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18808-15. PubMed ID: 25310596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation.
    Lan X; Voznyy O; García de Arquer FP; Liu M; Xu J; Proppe AH; Walters G; Fan F; Tan H; Liu M; Yang Z; Hoogland S; Sargent EH
    Nano Lett; 2016 Jul; 16(7):4630-4. PubMed ID: 27351104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thiol and Halometallate, Mutually Passivated Quantum Dot Ink for Photovoltaic Application.
    Mandal D; Goswami PN; Rath AK
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26100-26108. PubMed ID: 31257850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution-Phase Hybrid Passivation for Efficient Infrared-Band Gap Quantum Dot Solar Cells.
    Mahajan C; Sharma A; Rath AK
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49840-49848. PubMed ID: 33081466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Dots Coupled to an Oriented Two-Dimensional Crystalline Matrix for Solar Cell Application.
    Mandal D; Rath AK
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):39074-39082. PubMed ID: 30350942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient and Stable PbS Quantum Dot Solar Cells by Triple-Cation Perovskite Passivation.
    Albaladejo-Siguan M; Becker-Koch D; Taylor AD; Sun Q; Lami V; Oppenheimer PG; Paulus F; Vaynzof Y
    ACS Nano; 2020 Jan; 14(1):384-393. PubMed ID: 31721556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passivation of PbS Quantum Dot Surface with l-Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells.
    Jumabekov AN; Cordes N; Siegler TD; Docampo P; Ivanova A; Fominykh K; Medina DD; Peter LM; Bein T
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4600-7. PubMed ID: 26771519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced film quality of PbS QD solid by eliminating the oxide traps through an
    Jia L; Wang L; Lin Y; Zhou X; Jia J
    Dalton Trans; 2023 Jan; 52(5):1441-1448. PubMed ID: 36645319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Passivation for Efficient PbS Quantum Dot Solar Cells by Precursor Engineering.
    Wang Y; Lu K; Han L; Liu Z; Shi G; Fang H; Chen S; Wu T; Yang F; Gu M; Zhou S; Ling X; Tang X; Zheng J; Loi MA; Ma W
    Adv Mater; 2018 Apr; 30(16):e1704871. PubMed ID: 29543986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells.
    Sun Z; Sitbon G; Pons T; Bakulin AA; Chen Z
    Sci Rep; 2015 May; 5():10626. PubMed ID: 26024021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers.
    Ding C; Zhang Y; Liu F; Nakazawa N; Huang Q; Hayase S; Ogomi Y; Toyoda T; Wang R; Shen Q
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26142-26152. PubMed ID: 28862833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic ligand exchange and UV curing of PbS quantum dots for effective surface passivation.
    Tavakoli Dastjerdi H; Prochowicz D; Yadav P; Tavakoli MM
    Nanoscale; 2019 Dec; 11(47):22832-22840. PubMed ID: 31755484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells.
    Zhang J; Gao J; Miller EM; Luther JM; Beard MC
    ACS Nano; 2014 Jan; 8(1):614-22. PubMed ID: 24341705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing Dynamics of Lead(II) Sulfide Quantum Dots in Solution Ligand Exchange by Voltammetry.
    Chen J; Yuan C; Liang W; Zhang N; Zhang X; Wang Z; Wang C; Li X
    J Phys Chem Lett; 2021 Feb; 12(5):1567-1572. PubMed ID: 33538591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ Ligand Bonding Management of CsPbI
    Shi J; Li F; Jin Y; Liu C; Cohen-Kleinstein B; Yuan S; Li Y; Wang ZK; Yuan J; Ma W
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):22230-22237. PubMed ID: 32840045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Efficient Inverted Structural Quantum Dot Solar Cells.
    Wang R; Wu X; Xu K; Zhou W; Shang Y; Tang H; Chen H; Ning Z
    Adv Mater; 2018 Feb; 30(7):. PubMed ID: 29315851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Power Conversion Efficiency via Hybrid Ligand Exchange Treatment of p-Type PbS Quantum Dots.
    Teh ZL; Hu L; Zhang Z; Gentle AR; Chen Z; Gao Y; Yuan L; Hu Y; Wu T; Patterson RJ; Huang S
    ACS Appl Mater Interfaces; 2020 May; 12(20):22751-22759. PubMed ID: 32347092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution Processing and Self-Organization of PbS Quantum Dots Passivated with Formamidinium Lead Iodide (FAPbI
    Aynehband S; Mohammadi M; Thorwarth K; Hany R; Nüesch FA; Rossell MD; Pauer R; Nunzi JM; Simchi A
    ACS Omega; 2020 Jun; 5(25):15746-15754. PubMed ID: 32637850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.