These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 32805951)
1. Enhanced Passivation and Carrier Collection in Ink-Processed PbS Quantum Dot Solar Cells via a Supplementary Ligand Strategy. Yang X; Yang J; Ullah MI; Xia Y; Liang G; Wang S; Zhang J; Hsu HY; Song H; Tang J ACS Appl Mater Interfaces; 2020 Sep; 12(37):42217-42225. PubMed ID: 32805951 [TBL] [Abstract][Full Text] [Related]
2. Hydroiodic Acid Additive Enhanced the Performance and Stability of PbS-QDs Solar Cells via Suppressing Hydroxyl Ligand. Yang X; Yang J; Khan J; Deng H; Yuan S; Zhang J; Xia Y; Deng F; Zhou X; Umar F; Jin Z; Song H; Cheng C; Sabry M; Tang J Nanomicro Lett; 2020 Jan; 12(1):37. PubMed ID: 34138233 [TBL] [Abstract][Full Text] [Related]
3. Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation. Huang J; Xu B; Yuan C; Chen H; Sun J; Sun L; Agren H ACS Appl Mater Interfaces; 2014 Nov; 6(21):18808-15. PubMed ID: 25310596 [TBL] [Abstract][Full Text] [Related]
4. 10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation. Lan X; Voznyy O; García de Arquer FP; Liu M; Xu J; Proppe AH; Walters G; Fan F; Tan H; Liu M; Yang Z; Hoogland S; Sargent EH Nano Lett; 2016 Jul; 16(7):4630-4. PubMed ID: 27351104 [TBL] [Abstract][Full Text] [Related]
5. Thiol and Halometallate, Mutually Passivated Quantum Dot Ink for Photovoltaic Application. Mandal D; Goswami PN; Rath AK ACS Appl Mater Interfaces; 2019 Jul; 11(29):26100-26108. PubMed ID: 31257850 [TBL] [Abstract][Full Text] [Related]
6. Solution-Phase Hybrid Passivation for Efficient Infrared-Band Gap Quantum Dot Solar Cells. Mahajan C; Sharma A; Rath AK ACS Appl Mater Interfaces; 2020 Nov; 12(44):49840-49848. PubMed ID: 33081466 [TBL] [Abstract][Full Text] [Related]
7. Quantum Dots Coupled to an Oriented Two-Dimensional Crystalline Matrix for Solar Cell Application. Mandal D; Rath AK ACS Appl Mater Interfaces; 2018 Nov; 10(45):39074-39082. PubMed ID: 30350942 [TBL] [Abstract][Full Text] [Related]
8. Efficient and Stable PbS Quantum Dot Solar Cells by Triple-Cation Perovskite Passivation. Albaladejo-Siguan M; Becker-Koch D; Taylor AD; Sun Q; Lami V; Oppenheimer PG; Paulus F; Vaynzof Y ACS Nano; 2020 Jan; 14(1):384-393. PubMed ID: 31721556 [TBL] [Abstract][Full Text] [Related]
9. Passivation of PbS Quantum Dot Surface with l-Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells. Jumabekov AN; Cordes N; Siegler TD; Docampo P; Ivanova A; Fominykh K; Medina DD; Peter LM; Bein T ACS Appl Mater Interfaces; 2016 Feb; 8(7):4600-7. PubMed ID: 26771519 [TBL] [Abstract][Full Text] [Related]
10. Enhanced film quality of PbS QD solid by eliminating the oxide traps through an Jia L; Wang L; Lin Y; Zhou X; Jia J Dalton Trans; 2023 Jan; 52(5):1441-1448. PubMed ID: 36645319 [TBL] [Abstract][Full Text] [Related]
11. In Situ Passivation for Efficient PbS Quantum Dot Solar Cells by Precursor Engineering. Wang Y; Lu K; Han L; Liu Z; Shi G; Fang H; Chen S; Wu T; Yang F; Gu M; Zhou S; Ling X; Tang X; Zheng J; Loi MA; Ma W Adv Mater; 2018 Apr; 30(16):e1704871. PubMed ID: 29543986 [TBL] [Abstract][Full Text] [Related]
12. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells. Sun Z; Sitbon G; Pons T; Bakulin AA; Chen Z Sci Rep; 2015 May; 5():10626. PubMed ID: 26024021 [TBL] [Abstract][Full Text] [Related]
13. Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers. Ding C; Zhang Y; Liu F; Nakazawa N; Huang Q; Hayase S; Ogomi Y; Toyoda T; Wang R; Shen Q ACS Appl Mater Interfaces; 2018 Aug; 10(31):26142-26152. PubMed ID: 28862833 [TBL] [Abstract][Full Text] [Related]
14. Synergistic ligand exchange and UV curing of PbS quantum dots for effective surface passivation. Tavakoli Dastjerdi H; Prochowicz D; Yadav P; Tavakoli MM Nanoscale; 2019 Dec; 11(47):22832-22840. PubMed ID: 31755484 [TBL] [Abstract][Full Text] [Related]
15. Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells. Zhang J; Gao J; Miller EM; Luther JM; Beard MC ACS Nano; 2014 Jan; 8(1):614-22. PubMed ID: 24341705 [TBL] [Abstract][Full Text] [Related]
16. Probing Dynamics of Lead(II) Sulfide Quantum Dots in Solution Ligand Exchange by Voltammetry. Chen J; Yuan C; Liang W; Zhang N; Zhang X; Wang Z; Wang C; Li X J Phys Chem Lett; 2021 Feb; 12(5):1567-1572. PubMed ID: 33538591 [TBL] [Abstract][Full Text] [Related]
17. In Situ Ligand Bonding Management of CsPbI Shi J; Li F; Jin Y; Liu C; Cohen-Kleinstein B; Yuan S; Li Y; Wang ZK; Yuan J; Ma W Angew Chem Int Ed Engl; 2020 Dec; 59(49):22230-22237. PubMed ID: 32840045 [TBL] [Abstract][Full Text] [Related]
18. Highly Efficient Inverted Structural Quantum Dot Solar Cells. Wang R; Wu X; Xu K; Zhou W; Shang Y; Tang H; Chen H; Ning Z Adv Mater; 2018 Feb; 30(7):. PubMed ID: 29315851 [TBL] [Abstract][Full Text] [Related]
19. Enhanced Power Conversion Efficiency via Hybrid Ligand Exchange Treatment of p-Type PbS Quantum Dots. Teh ZL; Hu L; Zhang Z; Gentle AR; Chen Z; Gao Y; Yuan L; Hu Y; Wu T; Patterson RJ; Huang S ACS Appl Mater Interfaces; 2020 May; 12(20):22751-22759. PubMed ID: 32347092 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and Processing Strategy for High-Bandgap PbS Quantum Dots: A Promising Candidate for Harvesting High-Energy Photons in Solar Cells. Shinde DD; Sharma A; Dambhare NV; Mahajan C; Biswas A; Mitra A; Rath AK ACS Appl Mater Interfaces; 2024 Aug; 16(32):42522-42533. PubMed ID: 39087921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]