These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 32805951)

  • 21. Unraveling the Organic and Inorganic Passivation Mechanism of ZnO Nanowires for Construction of Efficient Bulk Heterojunction Quantum Dot Solar Cells.
    Wei Y; Nakamura M; Ding C; Liu D; Li H; Li Y; Yang Y; Wang D; Wang R; Hayase S; Masuda T; Shen Q
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36268-36276. PubMed ID: 35894431
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Towards high efficiency air-processed near-infrared responsive photovoltaics: bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays.
    Gonfa BA; Kim MR; Delegan N; Tavares AC; Izquierdo R; Wu N; El Khakani MA; Ma D
    Nanoscale; 2015 Jun; 7(22):10039-49. PubMed ID: 25975363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PbS quantum dots as additives in methylammonium halide perovskite solar cells: the effect of quantum dot capping.
    Ngo TT; Masi S; Mendez PF; Kazes M; Oron D; SerĂ³ IM
    Nanoscale Adv; 2019 Oct; 1(10):4109-4118. PubMed ID: 36132121
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photo-induced surface modification to improve the performance of lead sulfide quantum dot solar cell.
    Tulsani SR; Rath AK
    J Colloid Interface Sci; 2018 Jul; 522():120-125. PubMed ID: 29579563
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stable PbS colloidal quantum dot inks enable blade-coating infrared solar cells.
    Zhao X; Li M; Ma T; Yan J; Khalaf GMG; Chen C; Hsu HY; Song H; Tang J
    Front Optoelectron; 2023 Oct; 16(1):27. PubMed ID: 37882898
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study.
    Wang H; Wang Y; He B; Li W; Sulaman M; Xu J; Yang S; Tang Y; Zou B
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18526-33. PubMed ID: 27176547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effective Charge Collection of Electron Transport Layers for High-Performance Quantum Dot Infrared Solar Cells.
    Wang M; Liu S; Wei A; Luo T; Wen X; Li MY; Lu H
    ACS Appl Mater Interfaces; 2024 May; 16(19):24572-24579. PubMed ID: 38690767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere.
    Zhang J; Gao J; Church CP; Miller EM; Luther JM; Klimov VI; Beard MC
    Nano Lett; 2014 Oct; 14(10):6010-5. PubMed ID: 25203870
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly Photoconductive InP Quantum Dots Films and Solar Cells.
    Crisp RW; Kirkwood N; Grimaldi G; Kinge S; Siebbeles LDA; Houtepen AJ
    ACS Appl Energy Mater; 2018 Nov; 1(11):6569-6576. PubMed ID: 30506040
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical Properties, Morphology, and Stability of Iodide-Passivated Lead Sulfide Quantum Dots.
    Skurlov ID; Korzhenevskii IG; Mudrak AS; Dubavik A; Cherevkov SA; Parfenov PS; Zhang X; Fedorov AV; Litvin AP; Baranov AV
    Materials (Basel); 2019 Oct; 12(19):. PubMed ID: 31581439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficiently Passivated PbSe Quantum Dot Solids for Infrared Photovoltaics.
    Liu S; Xiong K; Wang K; Liang G; Li MY; Tang H; Yang X; Huang Z; Lian L; Tan M; Wang K; Gao L; Song H; Zhang D; Gao J; Lan X; Tang J; Zhang J
    ACS Nano; 2021 Feb; 15(2):3376-3386. PubMed ID: 33512158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation.
    Chang J; Kuga Y; Mora-SerĂ³ I; Toyoda T; Ogomi Y; Hayase S; Bisquert J; Shen Q
    Nanoscale; 2015 Mar; 7(12):5446-56. PubMed ID: 25732872
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantum-Dot Tandem Solar Cells Based on a Solution-Processed Nanoparticle Intermediate Layer.
    Hu L; Wang Y; Shivarudraiah SB; Yuan J; Guan X; Geng X; Younis A; Hu Y; Huang S; Wu T; Halpert JE
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2313-2318. PubMed ID: 31840973
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unusual Surface Ligand Doping-Induced p-Type Quantum Dot Solids and Their Application in Solar Cells.
    Meng L; Xu Q; Thakur UK; Gong L; Zeng H; Shankar K; Wang X
    ACS Appl Mater Interfaces; 2020 Dec; 12(48):53942-53949. PubMed ID: 33211957
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A New Passivation Route Leading to Over 8% Efficient PbSe Quantum-Dot Solar Cells via Direct Ion Exchange with Perovskite Nanocrystals.
    Zhang Z; Chen Z; Yuan L; Chen W; Yang J; Wang B; Wen X; Zhang J; Hu L; Stride JA; Conibeer GJ; Patterson RJ; Huang S
    Adv Mater; 2017 Nov; 29(41):. PubMed ID: 28922475
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reducing Interface Recombination through Mixed Nanocrystal Interlayers in PbS Quantum Dot Solar Cells.
    Pradhan S; Stavrinadis A; Gupta S; Konstantatos G
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27390-27395. PubMed ID: 28787128
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organic-Inorganic Hybrid Passivation Enables Perovskite QLEDs with an EQE of 16.48.
    Song J; Fang T; Li J; Xu L; Zhang F; Han B; Shan Q; Zeng H
    Adv Mater; 2018 Dec; 30(50):e1805409. PubMed ID: 30306653
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Precursor Chemistry Enables the Surface Ligand Control of PbS Quantum Dots for Efficient Photovoltaics.
    Wang C; Wang Y; Jia Y; Wang H; Li X; Liu S; Liu X; Zhu H; Wang H; Liu Y; Zhang X
    Adv Sci (Weinh); 2023 Feb; 10(4):e2204655. PubMed ID: 36382562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving the photovoltaic performance for PbS QD thin film solar cells through interface engineering.
    Yang Y; Rao Z; Xu Q; Liang Y; Yang L
    J Colloid Interface Sci; 2022 Dec; 627():562-568. PubMed ID: 35870408
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stronger Coupling of Quantum Dots in Hole Transport Layer Through Intermediate Ligand Exchange to Enhance the Efficiency of PbS Quantum Dot Solar Cells.
    Wei Y; Ding C; Shi G; Bi H; Li Y; Li H; Liu D; Yang Y; Wang D; Chen S; Wang R; Hayase S; Masuda T; Shen Q
    Small Methods; 2024 Apr; ():e2400015. PubMed ID: 38607951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.