BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 32806110)

  • 1. Transcriptomic Analysis of Root Restriction Effects on Phenolic Metabolites during Grape Berry Development and Ripening.
    Leng F; Cao J; Ge Z; Wang Y; Zhao C; Wang S; Li X; Zhang Y; Sun C
    J Agric Food Chem; 2020 Aug; 68(34):9090-9099. PubMed ID: 32806110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis.
    Ali MB; Howard S; Chen S; Wang Y; Yu O; Kovacs LG; Qiu W
    BMC Plant Biol; 2011 Jan; 11():7. PubMed ID: 21219654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Transcriptomic Analysis of Grape Berry in Response to Root Restriction during Developmental Stages.
    Leng F; Lin Q; Wu D; Wang S; Wang D; Sun C
    Molecules; 2016 Oct; 21(11):. PubMed ID: 27801843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic Analyses of Ascorbic Acid and Carotenoid Metabolites Influenced by Root Restriction during Grape Berry Development and Ripening.
    Leng F; Tang D; Lin Q; Cao J; Wu D; Wang S; Sun C
    J Agric Food Chem; 2017 Mar; 65(9):2008-2016. PubMed ID: 28177240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomics of the grape berry shrivel ripening disorder.
    Savoi S; Herrera JC; Forneck A; Griesser M
    Plant Mol Biol; 2019 Jun; 100(3):285-301. PubMed ID: 30941542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic Analyses of Root Restriction Effects on Phytohormone Content and Signal Transduction during Grape Berry Development and Ripening.
    Leng F; Cao J; Wang S; Jiang L; Li X; Sun C
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30082597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development.
    Deluc LG; Grimplet J; Wheatley MD; Tillett RL; Quilici DR; Osborne C; Schooley DA; Schlauch KA; Cushman JC; Cramer GR
    BMC Genomics; 2007 Nov; 8():429. PubMed ID: 18034876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative physiological, metabolomic, and transcriptomic analyses reveal developmental stage-dependent effects of cluster bagging on phenolic metabolism in Cabernet Sauvignon grape berries.
    Sun RZ; Cheng G; Li Q; Zhu YR; Zhang X; Wang Y; He YN; Li SY; He L; Chen W; Pan QH; Duan CQ; Wang J
    BMC Plant Biol; 2019 Dec; 19(1):583. PubMed ID: 31878879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic analysis of a white-to-red berry skin color reversion and its transcriptomic and metabolic consequences in grapevine (Vitis vinifera cv. 'Moscatel Galego').
    Ferreira V; Matus JT; Pinto-Carnide O; Carrasco D; Arroyo-García R; Castro I
    BMC Genomics; 2019 Dec; 20(1):952. PubMed ID: 31815637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of flavonoid genes in the red grape berry of 'Alicante Bouschet' varies with the histological distribution of anthocyanins and their chemical composition.
    Falginella L; Di Gaspero G; Castellarin SD
    Planta; 2012 Oct; 236(4):1037-51. PubMed ID: 22552639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomic and biochemical investigations support the role of rootstock-scion interaction in grapevine berry quality.
    Zombardo A; Crosatti C; Bagnaresi P; Bassolino L; Reshef N; Puccioni S; Faccioli P; Tafuri A; Delledonne M; Fait A; Storchi P; Cattivelli L; Mica E
    BMC Genomics; 2020 Jul; 21(1):468. PubMed ID: 32641089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome profiling and identification of the functional genes involved in berry development and ripening in Vitis vinifera.
    Ma Q; Yang J
    Gene; 2019 Jan; 680():84-96. PubMed ID: 30257181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation of Phenolic Compounds and Antioxidant Capacity during Berry Development in Black 'Isabel' Grape (
    Kurt-Celebi A; Colak N; Hayirlioglu-Ayaz S; Kostadinović Veličkovska S; Ilieva F; Esatbeyoglu T; Ayaz FA
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32847146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes of Anthocyanin Component Biosynthesis in 'Summer Black' Grape Berries after the Red Flesh Mutation Occurred.
    Zhang K; Liu Z; Guan L; Zheng T; Jiu S; Zhu X; Jia H; Fang J
    J Agric Food Chem; 2018 Sep; 66(35):9209-9218. PubMed ID: 30092133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre-véraison treatment of salicylic acid to enhance anthocyanin content of grape (Vitis vinifera L.) berries.
    Oraei M; Panahirad S; Zaare-Nahandi F; Gohari G
    J Sci Food Agric; 2019 Oct; 99(13):5946-5952. PubMed ID: 31206683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomics Integrated with Free and Bound Terpenoid Aroma Profiling during "Shine Muscat" (
    Wang W; Feng J; Wei L; Khalil-Ur-Rehman M; Nieuwenhuizen NJ; Yang L; Zheng H; Tao J
    J Agric Food Chem; 2021 Feb; 69(4):1413-1429. PubMed ID: 33481572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exogenous application of pectin-derived oligosaccharides to grape berries modifies anthocyanin accumulation, composition and gene expression.
    Villegas D; Handford M; Alcalde JA; Perez-Donoso A
    Plant Physiol Biochem; 2016 Jul; 104():125-33. PubMed ID: 27031424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries.
    Castellarin SD; Matthews MA; Di Gaspero G; Gambetta GA
    Planta; 2007 Dec; 227(1):101-12. PubMed ID: 17694320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic Analysis of Root Restriction Effects on the Primary Metabolites during Grape Berry Development and Ripening.
    Leng F; Wang Y; Cao J; Wang S; Wu D; Jiang L; Li X; Bao J; Karim N; Sun C
    Genes (Basel); 2022 Jan; 13(2):. PubMed ID: 35205325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development.
    Jaakola L; Määttä K; Pirttilä AM; Törrönen R; Kärenlampi S; Hohtola A
    Plant Physiol; 2002 Oct; 130(2):729-39. PubMed ID: 12376640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.