BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32806111)

  • 1. Catechol Dyes-Tyrosinase System for Colorimetric Determination and Discrimination of Dithiocarbamate Pesticides.
    Wang D; Liu D; Duan H; Xu Y; Zhou Z; Wang P
    J Agric Food Chem; 2020 Aug; 68(34):9252-9259. PubMed ID: 32806111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep eutectic solvent-based adhesive tape extraction combined with enzyme inhibition assay for the determination and distinction of dithiocarbamate pesticides in food samples.
    Guo Y; Zheng X; Wang X; Zhang Z; Qin S; Wang X; Jing X
    Talanta; 2023 Aug; 260():124601. PubMed ID: 37149938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand-free gold nanoparticles as colorimetric probes for the non-destructive determination of total dithiocarbamate pesticides after solid phase extraction.
    Giannoulis KM; Giokas DL; Tsogas GZ; Vlessidis AG
    Talanta; 2014 Feb; 119():276-83. PubMed ID: 24401415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colorimetric tyrosinase assay based on catechol inhibition of the oxidase-mimicking activity of chitosan-stabilized platinum nanoparticles.
    Deng HH; Lin XL; He SB; Wu GW; Wu WH; Yang Y; Lin Z; Peng HP; Xia XH; Chen W
    Mikrochim Acta; 2019 Apr; 186(5):301. PubMed ID: 31028498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multicolor visual screening of total dithiocarbamate pesticides in foods based on sulfydryl-mediated growth of gold nanobipyramids.
    Wang Z; Yang L; Ye X; Huang C; Yang W; Zhang L; Wu Z; Fu F
    Anal Chim Acta; 2020 Dec; 1139():59-67. PubMed ID: 33190710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A tyrosinase biosensor based on ordered mesoporous carbon-Au/L-lysine/Au nanoparticles for simultaneous determination of hydroquinone and catechol.
    Tang L; Zhou Y; Zeng G; Li Z; Liu Y; Zhang Y; Chen G; Yang G; Lei X; Wu M
    Analyst; 2013 Jun; 138(12):3552-60. PubMed ID: 23671910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colorimetric multienzymatic smart sensors for hydrogen peroxide, glucose and catechol screening analysis.
    Hosu O; Lettieri M; Papara N; Ravalli A; Sandulescu R; Cristea C; Marrazza G
    Talanta; 2019 Nov; 204():525-532. PubMed ID: 31357329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward Food Freshness Monitoring: Coordination Binding-Based Colorimetric Sensor Array for Sulfur-Containing Amino Acids.
    Lyu X; Tang W; Sasaki Y; Zhao J; Zheng T; Tian Y; Minami T
    Front Chem; 2021; 9():685783. PubMed ID: 34222197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the nanogold-4,4'-bis(methanethiol)biphenyl modified gold electrode to the determination of tyrosinase-catechol reaction kinetics in acetonitrile.
    Nakamura T; Ren J; Zhu KM; Kawara S; Jin B
    Anal Sci; 2006 Sep; 22(9):1261-4. PubMed ID: 16966822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity of mushroom tyrosinase on catechol and on a catechol estrogen in an organic solvent.
    Jacobsohn GM; Iskandar R; Jacobsohn MK
    Biochim Biophys Acta; 1993 Oct; 1202(2):317-24. PubMed ID: 8399395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of a highly sensitive enzyme electrode using gold nanoparticles for measurement of pesticides at the ppt level.
    Kim GY; Shim J; Kang MS; Moon SH
    J Environ Monit; 2008 May; 10(5):632-7. PubMed ID: 18449400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow injection-FTIR determination of dithiocarbamate pesticides.
    Cassella AR; Cassella RJ; Garrigues S; Santelli RE; de Campos RC; de la Guardia M
    Analyst; 2000 Oct; 125(10):1829-33. PubMed ID: 11070551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic aspects of the tyrosinase oxidation of hydroquinone.
    Ramsden CA; Riley PA
    Bioorg Med Chem Lett; 2014 Jun; 24(11):2463-4. PubMed ID: 24767847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalysis of catechol oxidation by metal-dithiocarbamate complexes in pesticides.
    Fitsanakis VA; Amarnath V; Moore JT; Montine KS; Zhang J; Montine TJ
    Free Radic Biol Med; 2002 Dec; 33(12):1714-23. PubMed ID: 12488139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silver Nanoparticles with Sodium Dodecyl Sulfate as a Colorimetric Probe for the Detection of Dithiocarbamate Pesticides in Environmental Samples.
    Ghoto SA; Khuhawar MY; Jahangir TM
    Anal Sci; 2019 Jun; 35(6):631-637. PubMed ID: 30745506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amperometric detection of catechol using tyrosinase modified electrodes enhanced by the layer-by-layer assembly of gold nanocubes and polyelectrolytes.
    Karim MN; Lee JE; Lee HJ
    Biosens Bioelectron; 2014 Nov; 61():147-51. PubMed ID: 24874658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical behavior of catechol and 3,4-dihydroxytoluene in acetonitrile at a platinum-disk electrode modified with a tyrosinase containing polyacrylamide film.
    Miyasaka T; Takahashi Y; Nakamura T
    Anal Sci; 2001 Sep; 17(9):1055-8. PubMed ID: 11708058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on synergistic toxic effects of copper and dithiocarbamate pesticides with the ciliate protozoan Colpidium campylum (Stokes).
    Bonnemain H; Dive D
    Ecotoxicol Environ Saf; 1990 Jun; 19(3):320-6. PubMed ID: 2114279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-Readout Tyrosinase Activity Assay Facilitated by a Chromo-Fluorogenic Reaction between Catechols and Naphthoresorcin.
    Zhao J; Liu G; Sun J; Wang Q; Li ZJ; Yang X
    Anal Chem; 2020 Jan; 92(2):2316-2322. PubMed ID: 31859491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tyrosinase, mTyr-CNK, that is functionally available as a monophenol monooxygenase.
    Do H; Kang E; Yang B; Cha HJ; Choi YS
    Sci Rep; 2017 Dec; 7(1):17267. PubMed ID: 29222480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.