BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 32806159)

  • 1. Engineered Biosynthesis of Fungal 4-Quinolone Natural Products.
    Liu M; Ohashi M; Tang Y
    Org Lett; 2020 Aug; 22(16):6637-6641. PubMed ID: 32806159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quinolactacin Biosynthesis Involves Non-Ribosomal-Peptide-Synthetase-Catalyzed Dieckmann Condensation to Form the Quinolone-γ-lactam Hybrid.
    Zhao F; Liu Z; Yang S; Ding N; Gao X
    Angew Chem Int Ed Engl; 2020 Oct; 59(43):19108-19114. PubMed ID: 32663343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of quinolactacin A, a TNF production inhibitor.
    Sasaki T; Takahashi S; Uchida K; Funayama S; Kainosho M; Nakagawa A
    J Antibiot (Tokyo); 2006 Jul; 59(7):418-27. PubMed ID: 17025018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of the tetramic acids Sch210971 and Sch210972.
    Kakule TB; Zhang S; Zhan J; Schmidt EW
    Org Lett; 2015 May; 17(10):2295-7. PubMed ID: 25885659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis of nonribosomal peptide macrocyclization in fungi.
    Zhang J; Liu N; Cacho RA; Gong Z; Liu Z; Qin W; Tang C; Tang Y; Zhou J
    Nat Chem Biol; 2016 Dec; 12(12):1001-1003. PubMed ID: 27748753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concise enantioselective syntheses of quinolactacins A and B through alternative Winterfeldt oxidation.
    Zhang X; Jiang W; Sui Z
    J Org Chem; 2003 May; 68(11):4523-6. PubMed ID: 12762761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methylation-dependent acyl transfer between polyketide synthase and nonribosomal peptide synthetase modules in fungal natural product biosynthesis.
    Zou Y; Xu W; Tsunematsu Y; Tang M; Watanabe K; Tang Y
    Org Lett; 2014 Dec; 16(24):6390-3. PubMed ID: 25494235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The biosynthetic logic and enzymatic machinery of approved fungi-derived pharmaceuticals and agricultural biopesticides.
    Sang M; Feng P; Chi LP; Zhang W
    Nat Prod Rep; 2024 Apr; 41(4):565-603. PubMed ID: 37990930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quinolactacins A, B and C: novel quinolone compounds from Penicillium sp. EPF-6. II. Physico-chemical properties and structure elucidation.
    Takahashi S; Kakinuma N; Iwai H; Yanagisawa T; Nagai K; Suzuki K; Tokunaga T; Nakagawa A
    J Antibiot (Tokyo); 2000 Nov; 53(11):1252-6. PubMed ID: 11213285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A convenient approach to an advanced intermediate toward the naturally occurring, bioactive 6-substituted 5-hydroxy-4-aryl-1H-quinolin-2-ones.
    Simonetti SO; Larghi EL; Kaufman TS
    Org Biomol Chem; 2016 Mar; 14(9):2625-36. PubMed ID: 26906496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quinolactacins A, B and C: novel quinolone compounds from Penicillium sp. EPF-6. I. Taxonomy, production, isolation and biological properties.
    Kakinuma N; Iwai H; Takahashi S; Hamano K; Yanagisawa T; Nagai K; Tanaka K; Suzuki K; Kirikae F; Kirikae T; Nakagawa A
    J Antibiot (Tokyo); 2000 Nov; 53(11):1247-51. PubMed ID: 11213284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of Amino Acid Derived α-Pyrones by an NRPS-NRPKS Hybrid Megasynthetase in Fungi.
    Hai Y; Huang A; Tang Y
    J Nat Prod; 2020 Mar; 83(3):593-600. PubMed ID: 32159958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quinolactacins revisited: from lactams to imide and beyond.
    Clark B; Capon RJ; Lacey E; Tennant S; Gill JH
    Org Biomol Chem; 2006 Apr; 4(8):1512-9. PubMed ID: 16604219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A chemocentric view of the natural product inventory.
    Walsh CT
    Nat Chem Biol; 2015 Sep; 11(9):620-4. PubMed ID: 26284660
    [No Abstract]   [Full Text] [Related]  

  • 15. Enzyme evolution in fungal indole alkaloid biosynthesis.
    Fraley AE; Sherman DH
    FEBS J; 2020 Apr; 287(7):1381-1402. PubMed ID: 32118354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-function analysis of the C-3 position in analogues of microbial behavioural modulators HHQ and PQS.
    Reen FJ; Clarke SL; Legendre C; McSweeney CM; Eccles KS; Lawrence SE; O'Gara F; McGlacken GP
    Org Biomol Chem; 2012 Nov; 10(44):8903-10. PubMed ID: 23051988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial MbtH-like Proteins Stimulate Nonribosomal Peptide Synthetase-Derived Secondary Metabolism in Filamentous Fungi.
    Zwahlen RD; Pohl C; Bovenberg RAL; Driessen AJM
    ACS Synth Biol; 2019 Aug; 8(8):1776-1787. PubMed ID: 31284717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemo-enzymatic Total Syntheses of Jorunnamycin A, Saframycin A, and N-Fmoc Saframycin Y3.
    Tanifuji R; Koketsu K; Takakura M; Asano R; Minami A; Oikawa H; Oguri H
    J Am Chem Soc; 2018 Aug; 140(34):10705-10709. PubMed ID: 30113836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of fungal meroterpenoids.
    Matsuda Y; Abe I
    Nat Prod Rep; 2016 Jan; 33(1):26-53. PubMed ID: 26497360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonribosomal peptide synthetase biosynthetic clusters of ESKAPE pathogens.
    Gulick AM
    Nat Prod Rep; 2017 Aug; 34(8):981-1009. PubMed ID: 28642945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.