BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32806222)

  • 1. Nanographene enfolded AuNPs sophisticatedly synchronized polycaprolactone based electrospun nanofibre scaffold for peripheral nerve regeneration.
    Jaswal R; Shrestha S; Shrestha BK; Kumar D; Park CH; Kim CS
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111213. PubMed ID: 32806222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanographene-Au fine-tuning to intensify plasmonic-resonance of polymeric hybrid bionanosystem for synergistic phototherapy and nerve photobiomodulation.
    Jaswal R; Kumar D; Rezk AI; Kaliannagounder VK; Park CH; Min KH
    Colloids Surf B Biointerfaces; 2024 May; 237():113820. PubMed ID: 38502975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and characterization of gold nanoparticle-doped electrospun PCL/chitosan nanofibrous scaffolds for nerve tissue engineering.
    Saderi N; Rajabi M; Akbari B; Firouzi M; Hassannejad Z
    J Mater Sci Mater Med; 2018 Aug; 29(9):134. PubMed ID: 30120577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration.
    Wang J; Cheng Y; Chen L; Zhu T; Ye K; Jia C; Wang H; Zhu M; Fan C; Mo X
    Acta Biomater; 2019 Jan; 84():98-113. PubMed ID: 30471474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced graphene oxide-GelMA-PCL hybrid nanofibers for peripheral nerve regeneration.
    Fang X; Guo H; Zhang W; Fang H; Li Q; Bai S; Zhang P
    J Mater Chem B; 2020 Dec; 8(46):10593-10601. PubMed ID: 33135715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering 2D approaches fibrous platform incorporating turmeric and polyaniline nanoparticles to predict the expression of βIII-Tubulin and TREK-1 through qRT-PCR to detect neuronal differentiation of PC12 cells.
    Shrestha S; Jang SR; Shrestha BK; Park CH; Kim CS
    Mater Sci Eng C Mater Biol Appl; 2021 Aug; 127():112176. PubMed ID: 34225892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation.
    Wang L; Wu Y; Hu T; Ma PX; Guo B
    Acta Biomater; 2019 Sep; 96():175-187. PubMed ID: 31260823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and evaluation of porous and conductive nanofibrous scaffolds for nerve tissue engineering.
    Pooshidani Y; Zoghi N; Rajabi M; Haghbin Nazarpak M; Hassannejad Z
    J Mater Sci Mater Med; 2021 Apr; 32(4):46. PubMed ID: 33847824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering.
    Maharjan B; Kaliannagounder VK; Jang SR; Awasthi GP; Bhattarai DP; Choukrani G; Park CH; Kim CS
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():111056. PubMed ID: 32994008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-Printed PCL/rGO Conductive Scaffolds for Peripheral Nerve Injury Repair.
    Vijayavenkataraman S; Thaharah S; Zhang S; Lu WF; Fuh JYH
    Artif Organs; 2019 May; 43(5):515-523. PubMed ID: 30229979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration.
    Shitole AA; Raut PW; Sharma N; Giram P; Khandwekar AP; Garnaik B
    J Mater Sci Mater Med; 2019 Apr; 30(5):51. PubMed ID: 31011810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioengineered 3D nanocomposite based on gold nanoparticles and gelatin nanofibers for bone regeneration: in vitro and in vivo study.
    Samadian H; Khastar H; Ehterami A; Salehi M
    Sci Rep; 2021 Jul; 11(1):13877. PubMed ID: 34230542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo.
    Huang L; Zhu L; Shi X; Xia B; Liu Z; Zhu S; Yang Y; Ma T; Cheng P; Luo K; Huang J; Luo Z
    Acta Biomater; 2018 Mar; 68():223-236. PubMed ID: 29274478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gum tragacanth/poly(l-lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage.
    Ranjbar-Mohammadi M; Prabhakaran MP; Bahrami SH; Ramakrishna S
    Carbohydr Polym; 2016 Apr; 140():104-12. PubMed ID: 26876833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun PCL, gold nanoparticles, and soy lecithin composite material for tissue engineering applications.
    Matson T; Gootee J; Snider C; Brockman J; Grant D; Grant SA
    J Biomater Appl; 2019 Feb; 33(7):979-988. PubMed ID: 30522383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity.
    Entekhabi E; Haghbin Nazarpak M; Moztarzadeh F; Sadeghi A
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():380-7. PubMed ID: 27612726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Porous Scaffolds with Biomimetic Microarchitecture and Bioactivity for Cartilage Tissue Engineering.
    Li Y; Liu Y; Xun X; Zhang W; Xu Y; Gu D
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36359-36370. PubMed ID: 31509372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polydopamine-Templated Hydroxyapatite Reinforced Polycaprolactone Composite Nanofibers with Enhanced Cytocompatibility and Osteogenesis for Bone Tissue Engineering.
    Gao X; Song J; Ji P; Zhang X; Li X; Xu X; Wang M; Zhang S; Deng Y; Deng F; Wei S
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3499-515. PubMed ID: 26756224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designed hybrid scaffolds consisting of polycaprolactone microstrands and electrospun collagen-nanofibers for bone tissue regeneration.
    Lee H; Yeo M; Ahn S; Kang DO; Jang CH; Lee H; Park GM; Kim GH
    J Biomed Mater Res B Appl Biomater; 2011 May; 97(2):263-70. PubMed ID: 21384546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic effect of topography, surface chemistry and conductivity of the electrospun nanofibrous scaffold on cellular response of PC12 cells.
    Tian L; Prabhakaran MP; Hu J; Chen M; Besenbacher F; Ramakrishna S
    Colloids Surf B Biointerfaces; 2016 Sep; 145():420-429. PubMed ID: 27232305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.