BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32806225)

  • 1. Correlating the secondary protein structure of natural spider silk with its guiding properties for Schwann cells.
    Naghilou A; Pöttschacher L; Millesi F; Mann A; Supper P; Semmler L; Weiss T; Backus EHG; Radtke C
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111219. PubMed ID: 32806225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the material properties of dragline spider silk affecting Schwann cell migration.
    Naghilou A; Peter K; Millesi F; Stadlmayr S; Wolf S; Rad A; Semmler L; Supper P; Ploszczanski L; Liu J; Burghammer M; Riekel C; Bismarck A; Backus EHG; Lichtenegger H; Radtke C
    Int J Biol Macromol; 2023 Jul; 244():125398. PubMed ID: 37330085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Analysis of Various Spider Silks in Regard to Nerve Regeneration: Material Properties and Schwann Cell Response.
    Stadlmayr S; Peter K; Millesi F; Rad A; Wolf S; Mero S; Zehl M; Mentler A; Gusenbauer C; Konnerth J; Schniepp HC; Lichtenegger H; Naghilou A; Radtke C
    Adv Healthc Mater; 2024 Mar; 13(8):e2302968. PubMed ID: 38079208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defining the regenerative effects of native spider silk fibers on primary Schwann cells, sensory neurons, and nerve-associated fibroblasts.
    Millesi F; Weiss T; Mann A; Haertinger M; Semmler L; Supper P; Pils D; Naghilou A; Radtke C
    FASEB J; 2021 Feb; 35(2):e21196. PubMed ID: 33210360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and Schwann Cell Seeding of up to 15.0 cm Long Spider Silk Nerve Conduits for Reconstruction of Peripheral Nerve Defects.
    Kornfeld T; Vogt PM; Bucan V; Peck CT; Reimers K; Radtke C
    J Funct Biomater; 2016 Nov; 7(4):. PubMed ID: 27916868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-Culturing Human Adipose Derived Stem Cells and Schwann Cells on Spider Silk-A New Approach as Prerequisite for Enhanced Nerve Regeneration.
    Resch A; Wolf S; Mann A; Weiss T; Stetco AL; Radtke C
    Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30586946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silk-in-Silk Nerve Guidance Conduits Enhance Regeneration in a Rat Sciatic Nerve Injury Model.
    Semmler L; Naghilou A; Millesi F; Wolf S; Mann A; Stadlmayr S; Mero S; Ploszczanski L; Greutter L; Woehrer A; Placheta-Györi E; Vollrath F; Weiss T; Radtke C
    Adv Healthc Mater; 2023 Apr; 12(11):e2203237. PubMed ID: 36683305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural Occurring Silks and Their Analogues as Materials for Nerve Conduits.
    Radtke C
    Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27775616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit.
    Allmeling C; Jokuszies A; Reimers K; Kall S; Vogt PM
    J Cell Mol Med; 2006; 10(3):770-7. PubMed ID: 16989736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spider silk nerve graft promotes axonal regeneration on long distance nerve defect in a sheep model.
    Kornfeld T; Nessler J; Helmer C; Hannemann R; Waldmann KH; Peck CT; Hoffmann P; Brandes G; Vogt PM; Radtke C
    Biomaterials; 2021 Apr; 271():120692. PubMed ID: 33607544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of stress on the molecular structure and mechanical properties of supercontracted spider dragline silks.
    Dong Q; Fang G; Huang Y; Hu L; Yao J; Shao Z; Ling S; Chen X
    J Mater Chem B; 2020 Jan; 8(1):168-176. PubMed ID: 31789330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Changes in Spider Dragline Silk after Repeated Supercontraction-Stretching Processes.
    Hu L; Chen Q; Yao J; Shao Z; Chen X
    Biomacromolecules; 2020 Dec; 21(12):5306-5314. PubMed ID: 33206498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyis of structure/property relationships in silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks using Raman spectroscopy.
    Sirichaisit J; Brookes VL; Young RJ; Vollrath F
    Biomacromolecules; 2003; 4(2):387-94. PubMed ID: 12625736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical and physical properties of recombinant spider silk films using organic and aqueous solvents.
    Tucker CL; Jones JA; Bringhurst HN; Copeland CG; Addison JB; Weber WS; Mou Q; Yarger JL; Lewis RV
    Biomacromolecules; 2014 Aug; 15(8):3158-70. PubMed ID: 25030809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating adhesion and alignment of dental pulp stem cells to a spider silk substrate for tissue engineering applications.
    Hafner K; Montag D; Maeser H; Peng C; Marcotte WR; Dean D; Kennedy MS
    Mater Sci Eng C Mater Biol Appl; 2017 Dec; 81():104-112. PubMed ID: 28887952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy.
    Lefèvre T; Rousseau ME; Pézolet M
    Biophys J; 2007 Apr; 92(8):2885-95. PubMed ID: 17277183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of protein conformation and orientation in silkworm and spider silk fibers using Raman microspectroscopy.
    Rousseau ME; Lefèvre T; Beaulieu L; Asakura T; Pézolet M
    Biomacromolecules; 2004; 5(6):2247-57. PubMed ID: 15530039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The method of purifying bioengineered spider silk determines the silk sphere properties.
    Jastrzebska K; Felcyn E; Kozak M; Szybowicz M; Buchwald T; Pietralik Z; Jesionowski T; Mackiewicz A; Dams-Kozlowska H
    Sci Rep; 2016 Jun; 6():28106. PubMed ID: 27312998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and optical studies on selected web spinning spider silks.
    Karthikeyani R; Divya A; Mathavan T; Asath RM; Benial AM; Muthuchelian K
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 170():111-6. PubMed ID: 27423109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spider silk fibres in artificial nerve constructs promote peripheral nerve regeneration.
    Allmeling C; Jokuszies A; Reimers K; Kall S; Choi CY; Brandes G; Kasper C; Scheper T; Guggenheim M; Vogt PM
    Cell Prolif; 2008 Jun; 41(3):408-20. PubMed ID: 18384388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.