These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 32806229)
1. Synthesis of photocrosslinkable hydrogels for engineering three-dimensional vascular-like constructs by surface tension-driven assembly. Xiao W; Qu X; Tan Y; Xiao J; Le Y; Li Y; Liu X; Li B; Liao X Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111143. PubMed ID: 32806229 [TBL] [Abstract][Full Text] [Related]
2. A biocompatible hydrogel with improved stiffness and hydrophilicity for modular tissue engineering assembly. Wei D; Xiao W; Sun J; Zhong M; Guo L; Fan H; Zhang X J Mater Chem B; 2015 Apr; 3(14):2753-2763. PubMed ID: 32262404 [TBL] [Abstract][Full Text] [Related]
3. Permeable hollow 3D tissue-like constructs engineered by on-chip hydrodynamic-driven assembly of multicellular hierarchical micromodules. Cui J; Wang H; Shi Q; Ferraro P; Sun T; Dario P; Huang Q; Fukuda T Acta Biomater; 2020 Sep; 113():328-338. PubMed ID: 32534164 [TBL] [Abstract][Full Text] [Related]
4. Photo-cross-linkable methacrylated gelatin and hydroxyapatite hybrid hydrogel for modularly engineering biomimetic osteon. Zuo Y; Liu X; Wei D; Sun J; Xiao W; Zhao H; Guo L; Wei Q; Fan H; Zhang X ACS Appl Mater Interfaces; 2015 May; 7(19):10386-94. PubMed ID: 25928732 [TBL] [Abstract][Full Text] [Related]
5. Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels. Du Y; Ghodousi M; Qi H; Haas N; Xiao W; Khademhosseini A Biotechnol Bioeng; 2011 Jul; 108(7):1693-703. PubMed ID: 21337336 [TBL] [Abstract][Full Text] [Related]
6. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects. Compaan AM; Song K; Chai W; Huang Y ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226 [TBL] [Abstract][Full Text] [Related]
8. A Versatile Method for Fabricating Tissue Engineering Scaffolds with a Three-Dimensional Channel for Prevasculature Networks. Li S; Liu YY; Liu LJ; Hu QX ACS Appl Mater Interfaces; 2016 Sep; 8(38):25096-103. PubMed ID: 27607243 [TBL] [Abstract][Full Text] [Related]
9. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Liu Y; Chan-Park MB Biomaterials; 2010 Feb; 31(6):1158-70. PubMed ID: 19897239 [TBL] [Abstract][Full Text] [Related]
10. Directed assembly of cell-laden hydrogels for engineering functional tissues. Kachouie NN; Du Y; Bae H; Khabiry M; Ahari AF; Zamanian B; Fukuda J; Khademhosseini A Organogenesis; 2010; 6(4):234-44. PubMed ID: 21220962 [TBL] [Abstract][Full Text] [Related]
11. Development and characterization of novel agar and gelatin injectable hydrogel as filler for peripheral nerve guidance channels. Tonda-Turo C; Gnavi S; Ruini F; Gambarotta G; Gioffredi E; Chiono V; Perroteau I; Ciardelli G J Tissue Eng Regen Med; 2017 Jan; 11(1):197-208. PubMed ID: 24737714 [TBL] [Abstract][Full Text] [Related]
12. Engineering anisotropic 3D tubular tissues with flexible thermoresponsive nanofabricated substrates. Williams NP; Rhodehamel M; Yan C; Smith AST; Jiao A; Murry CE; Scatena M; Kim DH Biomaterials; 2020 May; 240():119856. PubMed ID: 32105818 [TBL] [Abstract][Full Text] [Related]
13. Microfluidic-based generation of functional microfibers for biomimetic complex tissue construction. Zuo Y; He X; Yang Y; Wei D; Sun J; Zhong M; Xie R; Fan H; Zhang X Acta Biomater; 2016 Jul; 38():153-62. PubMed ID: 27130274 [TBL] [Abstract][Full Text] [Related]
15. Conformational Transition-Driven Self-Folding Hydrogel Based on Silk Fibroin and Gelatin for Tissue Engineering Applications. Wang L; Yan L; Liu S; Zhang H; Xiao J; Wang Z; Xiao W; Li B; Liao X Macromol Biosci; 2022 Oct; 22(10):e2200189. PubMed ID: 35895675 [TBL] [Abstract][Full Text] [Related]
16. Rapid engineering of endothelial cell-lined vascular-like structures in in situ crosslinkable hydrogels. Kageyama T; Kakegawa T; Osaki T; Enomoto J; Ito T; Nittami T; Fukuda J Biofabrication; 2014 Jun; 6(2):025006. PubMed ID: 24658207 [TBL] [Abstract][Full Text] [Related]
17. In vitro formation of vascular-like networks using hydrogels. Takei T; Sakai S; Yoshida M J Biosci Bioeng; 2016 Nov; 122(5):519-527. PubMed ID: 27117917 [TBL] [Abstract][Full Text] [Related]
18. Continuous Fabrication and Assembly of Spatial Cell-Laden Fibers for a Tissue-Like Construct via a Photolithographic-Based Microfluidic Chip. Wei D; Sun J; Bolderson J; Zhong M; Dalby MJ; Cusack M; Yin H; Fan H; Zhang X ACS Appl Mater Interfaces; 2017 May; 9(17):14606-14617. PubMed ID: 28157291 [TBL] [Abstract][Full Text] [Related]
19. Sequential assembly of 3D perfusable microfluidic hydrogels. He J; Zhu L; Liu Y; Li D; Jin Z J Mater Sci Mater Med; 2014 Nov; 25(11):2491-500. PubMed ID: 25027302 [TBL] [Abstract][Full Text] [Related]
20. Microfluidics-assisted fabrication of gelatin-silica core-shell microgels for injectable tissue constructs. Cha C; Oh J; Kim K; Qiu Y; Joh M; Shin SR; Wang X; Camci-Unal G; Wan KT; Liao R; Khademhosseini A Biomacromolecules; 2014 Jan; 15(1):283-90. PubMed ID: 24344625 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]