These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 32806239)
1. Fluorapatite ceramics for bone tissue regeneration: Synthesis, characterization and assessment of biomedical potential. Borkowski L; Przekora A; Belcarz A; Palka K; Jozefaciuk G; Lübek T; Jojczuk M; Nogalski A; Ginalska G Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111211. PubMed ID: 32806239 [TBL] [Abstract][Full Text] [Related]
2. Highly Porous Fluorapatite/β-1,3-Glucan Composite for Bone Tissue Regeneration: Characterization and In-Vitro Assessment of Biomedical Potential. Borkowski L; Przekora A; Belcarz A; Palka K; Jojczuk M; Lukasiewicz P; Nogalski A; Ginalska G Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638753 [TBL] [Abstract][Full Text] [Related]
3. In vitro bioactivity, mechanical behavior and antibacterial properties of mesoporous SiO Mubina MSK; Shailajha S; Sankaranarayanan R; Saranya L J Mech Behav Biomed Mater; 2019 Dec; 100():103379. PubMed ID: 31398691 [TBL] [Abstract][Full Text] [Related]
4. In vitro study of a novel multi-substituted hydroxyapatite nanopowder synthesized by an ultra-fast, efficient and green microwave-assisted method. Kheradmandfard M; Mahdavi K; Zargar Kharazi A; Kashani-Bozorg SF; Kim DE Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111310. PubMed ID: 32919671 [TBL] [Abstract][Full Text] [Related]
5. The improved biological response of shark tooth bioapatites in a comparative in vitro study with synthetic and bovine bone grafts. López-Álvarez M; Pérez-Davila S; Rodríguez-Valencia C; González P; Serra J Biomed Mater; 2016 Jun; 11(3):035011. PubMed ID: 27271863 [TBL] [Abstract][Full Text] [Related]
6. Novel bone-mimetic nanohydroxyapatite/collagen porous scaffolds biomimetically mineralized from surface silanized mesoporous nanobioglass/collagen hybrid scaffold: Physicochemical, mechanical and in vivo evaluations. El-Fiqi A; Kim JH; Kim HW Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110660. PubMed ID: 32204088 [TBL] [Abstract][Full Text] [Related]
7. Structural and elemental characterization of glass and ceramic particles for bone surgery. Sirkiä SV; Nakamura M; Qudsia S; Siekkinen M; Smått JH; Peltonen J; Heino TJ; Hupa L; Vallittu PK Dent Mater; 2021 Sep; 37(9):1350-1357. PubMed ID: 34175132 [TBL] [Abstract][Full Text] [Related]
8. In vitro bioactivity and degradation behaviour of β-wollastonite derived from natural waste. Palakurthy S; K VGR; Samudrala RK; P AA Mater Sci Eng C Mater Biol Appl; 2019 May; 98():109-117. PubMed ID: 30812993 [TBL] [Abstract][Full Text] [Related]
9. Bioactivity and mineralization of natural hydroxyapatite from cuttlefish bone and Bioglass Cozza N; Monte F; Bonani W; Aswath P; Motta A; Migliaresi C J Tissue Eng Regen Med; 2018 Feb; 12(2):e1131-e1142. PubMed ID: 28500666 [TBL] [Abstract][Full Text] [Related]
10. Spectroscopic investigation on formation and growth of mineralized nanohydroxyapatite for bone tissue engineering applications. Gopi D; Nithiya S; Shinyjoy E; Kavitha L Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun; 92():194-200. PubMed ID: 22446767 [TBL] [Abstract][Full Text] [Related]
11. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity. Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280 [TBL] [Abstract][Full Text] [Related]
12. Synthesis, characterization and bioactivity of a calcium-phosphate glass-ceramics obtained by the sol-gel processing method. Jmal N; Bouaziz J Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():279-288. PubMed ID: 27987709 [TBL] [Abstract][Full Text] [Related]
13. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties. Salarian M; Xu WZ; Wang Z; Sham TK; Charpentier PA ACS Appl Mater Interfaces; 2014 Oct; 6(19):16918-31. PubMed ID: 25184699 [TBL] [Abstract][Full Text] [Related]
14. Alkali-free bioactive glasses for bone tissue engineering: a preliminary investigation. Goel A; Kapoor S; Rajagopal RR; Pascual MJ; Kim HW; Ferreira JM Acta Biomater; 2012 Jan; 8(1):361-72. PubMed ID: 21925626 [TBL] [Abstract][Full Text] [Related]
16. Characterization, physicochemical properties and biocompatibility of La-incorporated apatites. Guo DG; Wang AH; Han Y; Xu KW Acta Biomater; 2009 Nov; 5(9):3512-23. PubMed ID: 19477306 [TBL] [Abstract][Full Text] [Related]
17. Fabrication, chemical composition change and phase evolution of biomorphic hydroxyapatite. Qian J; Kang Y; Zhang W; Li Z J Mater Sci Mater Med; 2008 Nov; 19(11):3373-83. PubMed ID: 18545942 [TBL] [Abstract][Full Text] [Related]
18. XRD, SEM-EDS, and FTIR studies of in vitro growth of an apatite-like layer on sol-gel glasses. Vallet-Regí M; Romero AM; Ragel CV; LeGeros RZ J Biomed Mater Res; 1999 Mar; 44(4):416-21. PubMed ID: 10397945 [TBL] [Abstract][Full Text] [Related]
19. Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts. Shi P; Liu M; Fan F; Yu C; Lu W; Du M Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():706-712. PubMed ID: 29853142 [TBL] [Abstract][Full Text] [Related]
20. Influence of fluorapatite on the properties of thermally sprayed hydroxyapatite coatings. Bhadang KA; Gross KA Biomaterials; 2004 Sep; 25(20):4935-45. PubMed ID: 15109854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]