These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 32806239)
21. Spectral characterization of apatite formation on poly(2-hydroxyethylmethacrylate)-TiO2 nanocomposite film prepared by sol-gel process. Prashantha K; Rashmi BJ; Venkatesha TV; Lee JH Spectrochim Acta A Mol Biomol Spectrosc; 2006 Oct; 65(2):340-4. PubMed ID: 16503415 [TBL] [Abstract][Full Text] [Related]
22. Extraction and characterisation of apatite- and tricalcium phosphate-based materials from cod fish bones. Piccirillo C; Silva MF; Pullar RC; Braga da Cruz I; Jorge R; Pintado MM; Castro PM Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):103-10. PubMed ID: 25428050 [TBL] [Abstract][Full Text] [Related]
23. Fluoride-containing nanoporous calcium-silicate MTA cements for endodontics and oral surgery: early fluorapatite formation in a phosphate-containing solution. Gandolfi MG; Taddei P; Siboni F; Modena E; Ginebra MP; Prati C Int Endod J; 2011 Oct; 44(10):938-49. PubMed ID: 21726240 [TBL] [Abstract][Full Text] [Related]
24. Influences of ionic liquid and temperature on the tailorable surface morphology of F-apatite nanocomposites for enhancing biological abilities for orthopedic implantation. Sonamuthu J; Samayanan S; Jeyaraman AR; Murugesan B; Krishnan B; Mahalingam S Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():99-107. PubMed ID: 29519448 [TBL] [Abstract][Full Text] [Related]
25. Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water. Lin FH; Liao CJ; Chen KS; Su JS; Lin CP Biomaterials; 2001 Nov; 22(22):2981-92. PubMed ID: 11575472 [TBL] [Abstract][Full Text] [Related]
26. Synthesis of fluorapatite-hydroxyapatite nanoparticles and toxicity investigations. Montazeri N; Jahandideh R; Biazar E Int J Nanomedicine; 2011; 6():197-201. PubMed ID: 21499417 [TBL] [Abstract][Full Text] [Related]
27. Influence of fluorine in the synthesis of apatites. Synthesis of solid solutions of hydroxy-fluorapatite. Rodríguez-Lorenzo LM; Hart JN; Gross KA Biomaterials; 2003 Sep; 24(21):3777-85. PubMed ID: 12818550 [TBL] [Abstract][Full Text] [Related]
28. [The preparation and characterization of sol-gel derived zinc modified carbonated hydroxyapatite]. Jiang HZ; Shi XC; Liao YM; Li W Hua Xi Kou Qiang Yi Xue Za Zhi; 2008 Jun; 26(3):241-3, 247. PubMed ID: 18705501 [TBL] [Abstract][Full Text] [Related]
29. Preparation of mica-based glass-ceramics with needle-like fluorapatite. Xiang Q; Liu Y; Sheng X; Dan X Dent Mater; 2007 Feb; 23(2):251-8. PubMed ID: 17134748 [TBL] [Abstract][Full Text] [Related]
30. Synthesis and Characterization of Sintered Sr/Fe-Modified Hydroxyapatite Bioceramics for Bone Tissue Engineering Applications. Ullah I; Gloria A; Zhang W; Ullah MW; Wu B; Li W; Domingos M; Zhang X ACS Biomater Sci Eng; 2020 Jan; 6(1):375-388. PubMed ID: 33463228 [TBL] [Abstract][Full Text] [Related]
31. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. Dhivya S; Saravanan S; Sastry TP; Selvamurugan N J Nanobiotechnology; 2015 Jun; 13():40. PubMed ID: 26065678 [TBL] [Abstract][Full Text] [Related]
33. Surface characterization and biological properties of regular dentin, demineralized dentin, and deproteinized dentin. Tabatabaei FS; Tatari S; Samadi R; Torshabi M J Mater Sci Mater Med; 2016 Nov; 27(11):164. PubMed ID: 27655430 [TBL] [Abstract][Full Text] [Related]
34. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability. Oliveira JM; Silva SS; Malafaya PB; Rodrigues MT; Kotobuki N; Hirose M; Gomes ME; Mano JF; Ohgushi H; Reis RL J Biomed Mater Res A; 2009 Oct; 91(1):175-86. PubMed ID: 18780358 [TBL] [Abstract][Full Text] [Related]
35. Synthesis of hierarchical porous bioactive glasses for bone tissue regeneration. Ma J; Lin H; Li X; Bian C; Xiang D; Qu F IET Nanobiotechnol; 2014 Dec; 8(4):216-21. PubMed ID: 25429500 [TBL] [Abstract][Full Text] [Related]
36. Tricalcium phosphate-Fluorapatite as bone tissue engineering: Evaluation of bioactivity and biocompatibility. Taktak R; Elghazel A; Bouaziz J; Charfi S; Keskes H Mater Sci Eng C Mater Biol Appl; 2018 May; 86():121-128. PubMed ID: 29525087 [TBL] [Abstract][Full Text] [Related]
37. Enhanced apatite-forming ability and antibacterial activity of porous anodic alumina embedded with CaO-SiO2-Ag2O bioactive materials. Ni S; Li X; Yang P; Ni S; Hong F; Webster TJ Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():700-8. PubMed ID: 26478362 [TBL] [Abstract][Full Text] [Related]
38. A Porous Fluoride-Substituted Bovine-Derived Hydroxyapatite Scaffold Constructed for Applications in Bone Tissue Regeneration. Ratnayake J; Gould M; Ramesh N; Mucalo M; Dias GJ Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473579 [TBL] [Abstract][Full Text] [Related]
39. In-vivo assessment of minerals substituted hydroxyapatite / poly sorbitol sebacate glutamate (PSSG) composite coating on titanium metal implant for orthopedic implantation. Pan J; Prabakaran S; Rajan M Biomed Pharmacother; 2019 Nov; 119():109404. PubMed ID: 31526972 [TBL] [Abstract][Full Text] [Related]
40. Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications. Chen XB; Li YC; Du Plessis J; Hodgson PD; Wen C Acta Biomater; 2009 Jun; 5(5):1808-20. PubMed ID: 19223253 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]