These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 32806269)

  • 41. Effects of extrusion temperature on microstructure, mechanical properties and in vitro degradation behavior of biodegradable Zn-3Cu-0.5Fe alloy.
    Yue R; Zhang J; Ke G; Jia G; Huang H; Pei J; Kang B; Zeng H; Yuan G
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110106. PubMed ID: 31546355
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of Copper on the Microstructural, Mechanical, and Biological Properties of Commercially Pure Zn-Based Alloys for a Potential Biodegradable Implant.
    Palai D; Roy T; Prasad PS; Hazra C; Dhara S; Sen R; Das S; Das K
    ACS Biomater Sci Eng; 2022 Apr; 8(4):1443-1463. PubMed ID: 35344329
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanical properties, corrosion behavior, and cytotoxicity of biodegradable Zn/Mg multilayered composites prepared by accumulative roll bonding process.
    Sun Q; Zhang D; Tong X; Lin J; Li Y; Wen C
    Acta Biomater; 2024 Jan; 173():509-525. PubMed ID: 38006909
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Developing Zn-2Cu-xLi (x < 0.1 wt %) alloys with suitable mechanical properties, degradation behaviors and cytocompatibility for vascular stents.
    Zhang X; Niu J; Yeung KW; Huang H; Gao Z; Chen C; Guan Q; Zhang G; Zhang L; Xue G; Yuan G
    Acta Biomater; 2024 Jun; ():. PubMed ID: 38876454
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials.
    Chou DT; Hong D; Saha P; Ferrero J; Lee B; Tan Z; Dong Z; Kumta PN
    Acta Biomater; 2013 Nov; 9(10):8518-33. PubMed ID: 23811218
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications--alloy processing, microstructure, mechanical properties, and biodegradation.
    Guan RG; Cipriano AF; Zhao ZY; Lock J; Tie D; Zhao T; Cui T; Liu H
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3661-9. PubMed ID: 23910262
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of high strength and ductile Zn-Al-Li alloys for potential use in bioresorbable medical devices.
    Farabi E; Sharp JA; Vahid A; Fabijanic DM; Barnett MR; Gallo SC
    Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111897. PubMed ID: 33641900
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biodegradable Zn-3Mg-0.7Mg
    Tong X; Cai W; Lin J; Wang K; Jin L; Shi Z; Zhang D; Lin J; Li Y; Dargusch M; Wen C
    Acta Biomater; 2021 Mar; 123():407-417. PubMed ID: 33453406
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A study of degradation behaviour and biocompatibility of Zn-Fe alloy prepared by electrodeposition.
    He J; Li DW; He FL; Liu YY; Liu YL; Zhang CY; Ren F; Ye YJ; Deng XD; Yin DC
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111295. PubMed ID: 32919656
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Corrosion fatigue behavior and anti-fatigue mechanisms of an additively manufactured biodegradable zinc-magnesium gyroid scaffold.
    Zhao D; Han C; Peng B; Cheng T; Fan J; Yang L; Chen L; Wei Q
    Acta Biomater; 2022 Nov; 153():614-629. PubMed ID: 36162767
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recent advances on the mechanical behavior of zinc based biodegradable metals focusing on the strain softening phenomenon.
    Huang H; Li G; Jia Q; Bian D; Guan S; Kulyasova O; Valiev RZ; Rau JV; Zheng Y
    Acta Biomater; 2022 Oct; 152():1-18. PubMed ID: 36028200
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The development of binary Mg-Ca alloys for use as biodegradable materials within bone.
    Li Z; Gu X; Lou S; Zheng Y
    Biomaterials; 2008 Apr; 29(10):1329-44. PubMed ID: 18191191
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microstructure, Mechanical Properties, and in Vitro Corrosion Behavior of Biodegradable Zn-1Fe-xMg Alloy.
    Xue P; Ma M; Li Y; Li X; Yuan J; Shi G; Wang K; Zhang K
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33137896
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Appropriately adapted properties of hot-extruded Zn-0.5Cu-xFe alloys aimed for biodegradable guided bone regeneration membrane application.
    Zhang W; Li P; Shen G; Mo X; Zhou C; Alexander D; Rupp F; Geis-Gerstorfer J; Zhang H; Wan G
    Bioact Mater; 2021 Apr; 6(4):975-989. PubMed ID: 33102940
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microstructure, mechanical properties, in vitro degradation and cytotoxicity evaluations of Mg-1.5Y-1.2Zn-0.44Zr alloys for biodegradable metallic implants.
    Fan J; Qiu X; Niu X; Tian Z; Sun W; Liu X; Li Y; Li W; Meng J
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2345-52. PubMed ID: 23498268
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vitro degradation and cytotoxicity response of Mg-4% Zn-0.5% Zr (ZK40) alloy as a potential biodegradable material.
    Hong D; Saha P; Chou DT; Lee B; Collins BE; Tan Z; Dong Z; Kumta PN
    Acta Biomater; 2013 Nov; 9(10):8534-47. PubMed ID: 23851175
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanical performance and biocompatibility assessment of Zn-0.05wt%Mg-(0.5, 1 wt%) Ag alloys.
    Xiao C; Su Y; Zhu X; Yu W; Cui D; Wei X; Zhang X; Li J; Wang F; Ren Y; Qin G; Zhao D
    J Biomed Mater Res B Appl Biomater; 2020 Oct; 108(7):2925-2936. PubMed ID: 32662233
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The microstructure and properties of cyclic extrusion compression treated Mg-Zn-Y-Nd alloy for vascular stent application.
    Wu Q; Zhu S; Wang L; Liu Q; Yue G; Wang J; Guan S
    J Mech Behav Biomed Mater; 2012 Apr; 8():1-7. PubMed ID: 22402149
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials.
    Brar HS; Wong J; Manuel MV
    J Mech Behav Biomed Mater; 2012 Mar; 7():87-95. PubMed ID: 22340688
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Zinc Ion-crosslinked polycarbonate/heparin composite coatings for biodegradable Zn-alloy stent applications.
    Pan K; Zhang W; Shi H; Dai M; Wei W; Liu X; Li X
    Colloids Surf B Biointerfaces; 2022 Oct; 218():112725. PubMed ID: 35914466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.