These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 32806319)

  • 1. Gelatin-alginate-cerium oxide nanocomposite scaffold for bone regeneration.
    Purohit SD; Singh H; Bhaskar R; Yadav I; Chou CF; Gupta MK; Mishra NC
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111111. PubMed ID: 32806319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a nanocomposite scaffold of gelatin-alginate-graphene oxide for bone tissue engineering.
    Purohit SD; Bhaskar R; Singh H; Yadav I; Gupta MK; Mishra NC
    Int J Biol Macromol; 2019 Jul; 133():592-602. PubMed ID: 31004650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro and in vivo biocompatibility assessment of free radical scavenging nanocomposite scaffolds for bone tissue regeneration.
    Dulany K; Hepburn K; Goins A; Allen JB
    J Biomed Mater Res A; 2020 Feb; 108(2):301-315. PubMed ID: 31606924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cerium-doped bioactive glass incorporation on an alginate/gelatin scaffold for bone tissue engineering: In vitro characterizations.
    Mostajeran H; Baheiraei N; Bagheri H
    Int J Biol Macromol; 2024 Jan; 255():128094. PubMed ID: 37977466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo.
    Dasgupta S; Maji K; Nandi SK
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alginate/Gelatin Hydrogel Scaffold Containing nCeO
    Li F; Li J; Song X; Sun T; Mi L; Liu J; Xia X; Bai N; Li X
    Int J Nanomedicine; 2022; 17():6561-6578. PubMed ID: 36578441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerium oxide nanoparticles disseminated chitosan gelatin scaffold for bone tissue engineering applications.
    Bhushan S; Singh S; Maiti TK; Das A; Barui A; Chaudhari LR; Joshi MG; Dutt D
    Int J Biol Macromol; 2023 May; 236():123813. PubMed ID: 36858088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3D Printed Bone Tissue Engineering Scaffold Composed of Alginate Dialdehyde-Gelatine Reinforced by Lysozyme Loaded Cerium Doped Mesoporous Silica-Calcia Nanoparticles.
    Monavari M; Medhekar R; Nawaz Q; Monavari M; Fuentes-Chandía M; Homaeigohar S; Boccaccini AR
    Macromol Biosci; 2022 Sep; 22(9):e2200113. PubMed ID: 35795888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering.
    Dutta SD; Hexiu J; Patel DK; Ganguly K; Lim KT
    Int J Biol Macromol; 2021 Jan; 167():644-658. PubMed ID: 33285198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and characterization of PHEMA-gelatin scaffold enriched with graphene oxide for bone tissue engineering.
    Tabatabaee S; Baheiraei N; Salehnia M
    J Orthop Surg Res; 2022 Apr; 17(1):216. PubMed ID: 35397609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gentamycin-loaded halloysite-based hydrogel nanocomposites for bone tissue regeneration: fabrication, evaluation of the antibacterial activity and cell response.
    Same S; Navidi G; Samee G; Abedi F; Aghazadeh M; Milani M; Akbarzadeh A; Davaran S
    Biomed Mater; 2022 Oct; 17(6):. PubMed ID: 36150376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PCL/Col I-based magnetic nanocomposite scaffold provides an osteoinductive environment for ADSCs in osteogenic cues-free media conditions.
    Sadeghzadeh H; Mehdipour A; Dianat-Moghadam H; Salehi R; Khoshfetrat AB; Hassani A; Mohammadnejad D
    Stem Cell Res Ther; 2022 Apr; 13(1):143. PubMed ID: 35379318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gelatin-polycaprolactone-nanohydroxyapatite electrospun nanocomposite scaffold for bone tissue engineering.
    Gautam S; Sharma C; Purohit SD; Singh H; Dinda AK; Potdar PD; Chou CF; Mishra NC
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111588. PubMed ID: 33321633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells.
    Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering.
    Sharma C; Dinda AK; Potdar PD; Chou CF; Mishra NC
    Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():416-427. PubMed ID: 27127072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proliferation and osteogenic differentiation of human bone marrow stromal cells on alginate-gelatine-hydroxyapatite scaffolds with anisotropic pore structure.
    Bernhardt A; Despang F; Lode A; Demmler A; Hanke T; Gelinsky M
    J Tissue Eng Regen Med; 2009 Jan; 3(1):54-62. PubMed ID: 19012272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alginate/Gelatin scaffolds incorporated with Silibinin-loaded Chitosan nanoparticles for bone formation in vitro.
    Leena RS; Vairamani M; Selvamurugan N
    Colloids Surf B Biointerfaces; 2017 Oct; 158():308-318. PubMed ID: 28711017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic Organic-Inorganic Nanocomposite Scaffolds to Regenerate Cranial Bone Defects in a Rat Animal Model.
    Moosavifar M; Parsaei H; Hosseini S; Mirmontazeri SM; Ahadi R; Ahadian S; Engel FB; Roshanbinfar K
    ACS Biomater Sci Eng; 2022 Mar; 8(3):1258-1270. PubMed ID: 35193354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison study on the behavior of human endometrial stem cell-derived osteoblast cells on PLGA/HA nanocomposite scaffolds fabricated by electrospinning and freeze-drying methods.
    Namini MS; Bayat N; Tajerian R; Ebrahimi-Barough S; Azami M; Irani S; Jangjoo S; Shirian S; Ai J
    J Orthop Surg Res; 2018 Mar; 13(1):63. PubMed ID: 29587806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo bone regeneration using a bioactive nanocomposite scaffold and human mesenchymal stem cells.
    Andalib N; Kehtari M; Seyedjafari E; Motamed N; Matin MM
    Cell Tissue Bank; 2021 Sep; 22(3):467-477. PubMed ID: 33398491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.