These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 32806353)

  • 1. Factors influencing the uptake and speciation transformation of antimony in the soil-plant system, and the redistribution and toxicity of antimony in plants.
    Zhu Y; Yang J; Wang L; Lin Z; Dai J; Wang R; Yu Y; Liu H; Rensing C; Feng R
    Sci Total Environ; 2020 Oct; 738():140232. PubMed ID: 32806353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice.
    Okkenhaug G; Zhu YG; He J; Li X; Luo L; Mulder J
    Environ Sci Technol; 2012 Mar; 46(6):3155-62. PubMed ID: 22309044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimony uptake, translocation and speciation in rice plants exposed to antimonite and antimonate.
    Ren JH; Ma LQ; Sun HJ; Cai F; Luo J
    Sci Total Environ; 2014 Mar; 475():83-9. PubMed ID: 24419289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimony in the soil-water-plant system at the Su Suergiu abandoned mine (Sardinia, Italy): strategies to mitigate contamination.
    Cidu R; Biddau R; Dore E; Vacca A; Marini L
    Sci Total Environ; 2014 Nov; 497-498():319-331. PubMed ID: 25137381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area.
    Okkenhaug G; Zhu YG; Luo L; Lei M; Li X; Mulder J
    Environ Pollut; 2011 Oct; 159(10):2427-34. PubMed ID: 21767897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fate and chemical speciation of antimony (Sb) during uptake, translocation and storage by rye grass using XANES spectroscopy.
    Ji Y; Sarret G; Schulin R; Tandy S
    Environ Pollut; 2017 Dec; 231(Pt 2):1322-1329. PubMed ID: 28935406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concentration and speciation of antimony and arsenic in soil profiles around the world's largest antimony metallurgical area in China.
    Yang H; He M; Wang X
    Environ Geochem Health; 2015 Feb; 37(1):21-33. PubMed ID: 24969304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anthropogenic impacts on the biogeochemistry and cycling of antimony.
    Shotyk W; Krachler M; Chen B
    Met Ions Biol Syst; 2005; 44():171-203. PubMed ID: 15971668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimony in soils of SW Poland-an overview of potentially enriched sites.
    Lewińska K; Karczewska A
    Environ Monit Assess; 2019 Jan; 191(2):70. PubMed ID: 30643996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vegetation type impacts microbial interaction with antimony contaminants in a mining-contaminated soil environment.
    Sun X; Li B; Han F; Xiao E; Wang Q; Xiao T; Sun W
    Environ Pollut; 2019 Sep; 252(Pt B):1872-1881. PubMed ID: 31374407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Pollution Level, Spatial Distribution, and Ecological Effects of Antimony in Soils of Mining Areas: A Review.
    Zhao S; Shi T; Terada A; Riya S
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic, antimony, and bismuth uptake and accumulation by plants in an old antimony mine, China.
    Wei C; Deng Q; Wu F; Fu Z; Xu L
    Biol Trace Elem Res; 2011 Dec; 144(1-3):1150-8. PubMed ID: 21547400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioavailability of arsenic and antimony in soils from an abandoned mining area, Glendinning (SW Scotland).
    Gál J; Hursthouse A; Cuthbert S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1263-74. PubMed ID: 17654146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The translocation of antimony in soil-rice system with comparisons to arsenic: Alleviation of their accumulation in rice by simultaneous use of Fe(II) and NO
    Wang X; Li F; Yuan C; Li B; Liu T; Liu C; Du Y; Liu C
    Sci Total Environ; 2019 Feb; 650(Pt 1):633-641. PubMed ID: 30212692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of arsenic and antimony biogeochemical behavior in water, soil and tailings from Xikuangshan, China.
    Fu Z; Wu F; Mo C; Deng Q; Meng W; Giesy JP
    Sci Total Environ; 2016 Jan; 539():97-104. PubMed ID: 26356182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speciation and location of arsenic and antimony in rice samples around antimony mining area.
    Wu TL; Cui XD; Cui PX; Ata-Ul-Karim ST; Sun Q; Liu C; Fan TT; Gong H; Zhou DM; Wang YJ
    Environ Pollut; 2019 Sep; 252(Pt B):1439-1447. PubMed ID: 31265954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake and Transformation of Methylated and Inorganic Antimony in Plants.
    Ji Y; Mestrot A; Schulin R; Tandy S
    Front Plant Sci; 2018; 9():140. PubMed ID: 29487607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the biogeochemical transformation, environmental impacts and biochar-based soil decontamination of antimony.
    Safeer R; Liu G; Yousaf B; Ashraf A; Haider MIS; Cheema AI; Ijaz S; Rashid A; Sikandar A; Pikoń K
    Environ Res; 2024 Jun; 251(Pt 2):118645. PubMed ID: 38485077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake, speciation and detoxification of antimonate and antimonite in As-hyperaccumulator Pteris Cretica L.
    He SX; Chen JY; Hu CY; Han R; Dai ZH; Guan DX; Ma LQ
    Environ Pollut; 2022 Sep; 308():119653. PubMed ID: 35724945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimony uptake, efflux and speciation in arsenic hyperaccumulator Pteris vittata.
    Tisarum R; Lessl JT; Dong X; de Oliveira LM; Rathinasabapathi B; Ma LQ
    Environ Pollut; 2014 Mar; 186():110-4. PubMed ID: 24370668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.